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Fragility of the nematic spin liquid induced by diagonal couplings in the square-lattice SU(3) model
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We present a large-scale density matrix renormalization group (DMRG) study of the spin-1 SU(3) bilinear-
biquadratic model on the square lattice, which was suggested to host a nematic spin liquid state in recent DMRG
calculations. We report that this spin liquid appears to strongly compete with a three-sublattice magnetic order.
To further study the competition between the two states, and the reason of the emergent nematic spin liquid,
we included an additional next-nearest-neighbor SU(3) symmetric interactions along one of the two plaquette
diagonal directions. This allows to tune the square-lattice model to the triangular-lattice model. By computing
spin correlation functions and various order parameters, we find that the three-sublattice order may develop at
infinitesimal additional new coupling, at least within the precision of our study. Compared with the previous
findings that the nematic spin liquid is stable in extended parameter regions with additional couplings that
respect the lattice symmetries of the square lattice, we argue that here the diagonal couplings, which frustrate
the bipartite-lattice structure, rapidly suppress the two-sublattice fluctuations and the three-sublattice order thus
wins. This numerical result is consistent with the conjecture that the nematic spin liquid emerges from the
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competition between two- and three-sublattice fluctuations.
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I. INTRODUCTION

Frustrated magnets are one of the most active and challeng-
ing directions in modern condensed matter physics. Various
exotic quantum phases have been found in spin systems
with frustration incorporated, among which the quantum spin
liquids (QSLs) are the most interesting ones. QSLs host dis-
ordered phases even down to zero temperature, and even
more remarkably, they have long-range entanglement [1,2]
as well as fractionalized excitations [3—-6]. Because of these
exotic properties, QSLs have been searched for extensively,
and recently spin-liquid-like phases have been reported in sev-
eral spin § = 1/2 antiferromagnetic materials and spin liquid
states have been found in some frustrated models by unbiased
numerical simulations [7,8].

The search for novel quantum phases has also been ex-
tended to spin S = 1 systems both experimentally [9-13] and
theoretically [14-28]. There are several spin-1 materials that
have been reported to host spin-liquid ground states, such
as the triangular layered materials NiGa,Sy4 [9], Ba;NiSb,0q
[10,11], and the layered honeycomb-lattice material 6HB-
Ba3NiSb,Og [12].

Theoretically, the bilinear-biquadratic Hamiltonian has
been suggested as a prototypical model for describing a spin-1
system beyond the Heisenberg model [29]. This extended
model is defined as
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where S; is the spin-1 operator at site 7, and J;; and K;;
are the bilinear and biquadratic interactions, respectively. In
this model, the highly symmetric SU(3) point with equal
bilinear and biquadratic interactions J;; = K;; is particularly
interesting. The strong competition between the two cou-
plings, together with the SU(3) symmetry, enhances the
frustration, which may lead to novel quantum phases. An
exact diagonalization study found a rich phase diagram for
the one-dimensional spin-1 bilinear-biquadratic model with
nearest-neighbor (NN) couplings [21], unveiling a quantum
phase transition near the SU(3) point, between a three-
sublattice quadrupolar order and the gapped Haldane phase
[14,30].

In two dimensions, intensive theoretical studies have fo-
cused on the highly symmetric SU(3) point of the model
Eq. (1) [23,31-41]. By considering only the NN couplings, a
trimerized valence bond state [31,37] and a plaquette valence
bond state [31,37] have been found as the ground states on the
kagome and honeycomb lattices, respectively. These emergent
states that spontaneously break the translational symmetry of
the lattice, rather than the magnetic ordering, indicate that the
three-flavor degree of freedom is frustrated by these lattice
geometries. On the other hand, on the triangular lattice the use
of linear flavor wave theory found a three-sublattice magnetic
order with a finite order moment [32,35]. This result was
also confirmed by the density matrix renormalization group
(DMRG) [35] and the infinite projected entangled pair states
(iPEPS) [40] calculations.

The SU(3) model on the square lattice may be the most
intriguing system, due to the additional frustration introduced

©2021 American Physical Society
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FIG. 1. Schematic representation of the spin-1 SU(3) model
studied here. The model has the previously used nearest-neighbor
(NN) Ji, K; interactions and the new additional next-nearest-
neighbor (NNN) J,, K, interactions along one of the diagonal
directions e,,,. We consider the equal bilinear-biquadratic interac-
tions J; = K; = 1 and J, = K;. For J, = K, = 1, the model realizes
the isotropic triangular-lattice model. For J, = K, = 0, it reduces to
the square-lattice model. Thus, the model interpolates between a tri-
angular and a square lattice. The sketch also illustrates the cylindrical
geometry used in the DMRG calculation, which has the periodic
boundary conditions along the y direction e, and the open boundary
conditions along the x direction e,.

by the competition between two- and three-sublattice fluctu-
ations [23,33-35,39,41]. While analytical methods, including
linear flavor wave [33] and Schwinger boson mean-field theo-
ries [35], predicted a three-sublattice order, these calculations
all failed to obtain a finite order parameter for neither spin
dipolar nor quadrupolar degrees of freedom, because the re-
duction of the order moments always diverges near the SU(3)
model due to the presence of gapless lines in the boson disper-
sions [35,41]. Therefore, advanced quantum computational
methods are required to study this system. Indeed, previous
DMRG calculations on the cylindrical geometry, with shifted
boundary conditions (designed to match the three-sublattice
structure) [35], and iPEPS simulations [35,40] also suggested
a three-sublattice order ground state that is similar to the
state on the triangular lattice. Interestingly, recent large-scale
DMRG calculations on the rectangular cylinders with regular
boundary conditions (see Fig. 1) found consistent evidence for
a nematic spin liquid phase emergent around the SU(3) point,
which spontaneously breaks the lattice rotational symmetry
possibly due to the dominant fluctuations at the momen-
tum q = (7, 2 /3) [41]. This dominant momentum may be
considered as a result of the strong competition between
two- and three-sublattice fluctuations. Indeed, in the pres-
ence of some additional further-neighbor interactions, which
respect the lattice symmetries of the square lattice and do
not frustrate either the two- or three-sublattice structures, the
nematic spin liquid was found to be stable in an extended
parameter region [42]. However, since the three-sublattice

magnetic order has not been clearly identified close to the
nematic spin liquid in previous studies [41,42], it remains
elusive how the two states compete near the SU(3) model
and it is unclear whether the nematic spin liquid indeed origi-
nates from the competition between two- and three-sublattice
fluctuations.

To shed light on these open questions, we study the square-
lattice SU(3) model with additional next-nearest-neighbor
(NNN) interactions J, = K, [also SU(3) symmetric] along
the e,;, direction (one of the two diagonal directions on
the square lattice), as shown in Fig. 1. With growing J,, K;
couplings, the system evolves from the square-lattice (with
the nematic spin-liquid ground state) to the triangular-lattice
model (where the ground state has been identified as the
three-sublattice order) [32,35,40]. In this paper, we perform
large-scale DMRG calculations for this model on a rectan-
gular cylindrical geometry. Through the calculations of spin
correlation functions and different order parameters, we find
that the three-sublattice order appears to develop at infinitesi-
mal J, = K, couplings, within the precision of our effort, and
the nematic spin liquid becomes, thus, unstable in the presence
of these additional diagonal couplings.

Compared with the previously considered couplings along
both the e,y, and e,_, directions [42], here the couplings
break the lattice C4 rotational symmetry, as well as the
mirror symmetries with respect to either e, or e, direc-
tion. Thus, the bipartite two-sublattice structure would be
frustrated. Our DMRG results suggest that these additional
couplings quickly suppress the two-sublattice fluctuations
and lead to the emergence of three-sublattice order. This
result indicates the crucial role of balancing two- and three-
sublattice fluctuations to stabilize the nematic spin liquid
state.

The organization of our paper is as follows. In Sec. II, we
introduce the model and the details of the DMRG simulations.
In Sec. III, we show our numerical results including the spin
correlations and different order parameters. The final section
is the summary and discussion in Sec. IV.

II. MODEL AND METHOD

We perform the DMRG simulations with spin-rotational
SU(2) symmetry [43,44] for the system on the square lat-
tice and we consider the SU(3) model by choosing the same
bilinear and biquadratic couplings for each bond, as shown
in Fig. 1. We set the NN couplings J; = K; = 1.0 as the
energy scale, and consider additional NNN couplings J, = K,
along the e, direction (see Fig. 1). When J, = K, = 1.0, the
system is equivalent to the isotropic triangular-lattice SU(3)
model.

In the DMRG simulation, we study the rectangular cylinder
(RC) geometry, as shown in Fig. 1. This cylindrical geometry
has the periodic boundary conditions along the y direction
e, and the open boundaries in the x direction e,. We denote
the cylinder as RCL,-L, (L, and L, are the numbers of sites
along the two directions, respectively). Since the nematic spin
liquid and the three-sublattice order states have the domi-
nant structure factors of magnetic correlation functions at
q = (m,2m/3) [41] and (27 /3,27 /3) [32,35] respectively,
we mainly study the systems with L, = 6,9 and L, up to 36,
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in order to be compatible with both two- and three-sublattice
structures. We keep up to 6000 SU(2) multiplets, with the
truncation errors smaller than 10~>. For J, = K, = 0, we also
study a L, = 12 cylinder by keeping up to 8000 SU(2) states
with the truncation error around 10~

III. NUMERICAL RESULTS

In order to detect the three-sublattice magnetic order,
one can compute both spin and quadrupolar correlation
functions (S;-S;) and (Q;-Q;). The quadrupolar tensor
operator Q; is defined as ( (Q¥ — Q})/2, (20¥ — Q" —
0")/(2V3). Q. 0F, OF) with 07 = S} + SIS — 38up
(o, B = x,Y, 2) [33,45]. By definition, the quadrupolar corre-
lation operator Q; - Q; can be also expressed via bilinear and
biquadratic terms as Q; - Q; = 2(S; - S;)* +S; - S; — 8/3.

With the computed correlation functions, we can make
the Fourier transformations to obtain the spin structure factor
as

Ss( —1
SQ)—]V

N

D88, @
iJ

and the quadrupolar structure factor as

1 A
7 Qi Qe 3)
s 1,_]

So(q) =
where the sites i, j are chosen inside the middle region
with the size Ny = L, x 2L, in order to avoid open-edge ef-
fects and consider both two- and three-sublattice orders [41].
Correspondingly, we can further obtain the order parame-
ters m3(q) = Ss(q)/N; and mj(q) = So(q)/N;. Because the
magnetic dipolar and quadrupolar correlations consistently
describe the three-sublattice order in the SU(3) model simulta-
neously, we will primarily display the results for the magnetic
dipolar correlations below.

A. Confirmation of the spin-liquid state in the nearest-neighbor
SU(3) model

We first reexamine the NN SU(3) model with J, = K, = 0.
In previous numerical studies, the nematic spin liquid and
the three-sublattice ordered state appeared to compete with
one another. The two states on finite-size clusters up to L, =
9 seem to have very close energies in DMRG calculations
(the DMRG calculations using the boundary-shifted cylinders
found the three-sublattice order [35]), but the spin liquid state
still has the lowest energy on the studied system sizes [41].
Here we further study the system with L, =12, L, = 32 by
pushing the simulation to our limit.

We have mainly checked whether the three-sublattice or-
der would emerge on the largest system size, in case the
absent order found in the previous DMRG calculation [41]
was due to finite-size effects. Therefore, we focused on the
spin structure factor Sg(q) of the obtained ground state. If
the three-sublattice order eventually wins on this larger size,
a sharp peak should be observed at q = (27/3, 27 /3). In
Fig. 3, we show the Sg(q) obtained from the spin correlations
of the middle 12 x 12 sites. It is clear that a round elongated
peak appears at q = (;r, 27 /3), and symmetry related points,
which is highly consistent with the results on the L, = 6,9

a) Jp=Kp=0.0  (b) Jo=Ko=1.0

FIG. 2. The spin dipolar (m5) and quadrupolar (mg,) order param-
eters for (a) J, = K, = 0 and (b) J, = K, = 1. Both order parameters
are obtained from the corresponding correlation functions of the mid-
dle 6 x 12 sites on a long RC6 cylinder. While the order parameters
are dominated by elongated horizontal regions at q = (7, 27 /3) in
the spin liquid state (a), prominent sharp point-like peaks appear at
q = (2 /3, 27 /3) in the three-sublattice order (b)

-0.3

cylinders [41] and, thus, does not support a three-sublattice
order. We emphasize that although this result for L, = 12
is less converged than for smaller systems as measured by
the truncation error, nevertheless the spin structure factor
qualitatively agrees well with the previous DMRG results in
Ref. [41] and clearly does not support the three-sublattice
order.

.15’s(q), JQ = Kg = 0, RC12-12
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FIG. 3. Spin structure factor Ss(q) of the SU(3) model with J, =
K> = 0 on the RC12-32 cylinder. The structure factor is computed
from the Fourier transform of the spin correlations for the middle
12 x 12 sites, which is featureless at q = (27 /3, 27 /3) but shows
rounded peaks at q = (7, 277 /3).
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FIG. 4. Coupling dependence and size scaling of the magnetic
dipolar order parameter m?. (a) Coupling dependence of m} at
q= (2n /3,27 /3) and (7,27 /3) on the RC6 and RCY cylinders.
The inset shows the zoom in of the RC9 data at very small cou-
plings. (b) Finite-size scaling of m%(2r /3, 27t /3) versus the cylinder
circumference Ly, with L, = 3,6, 9. For J, = K, = 0, the data are
extrapolated to zero in the quadratic fitting. For nonzero J, K>,
even a very small number J, = K; = 0.00035, remarkably the linear
extrapolation of the RC6 and RC9 data still leads to a nonzero result,
indicating a finite three-sublattice order.

B. Spin correlation function and identification of the
three-sublattice order

We first show our DMRG results by comparing the two
extremes, namely by studying the spin dipolar (mg) and
quadrupolar (mé) order parameters for the spin liquid state
at J, = K, = 0.0 and for the three-sublattice order at J, =
K> = 1.0 in Fig. 2. In the spin liquid state, both order pa-
rameters show a broad horizontally elongated feature at q =
(r,2m/3), completely different from the sharp peak at q =
(27 /3, 27 /3) in the three-sublattice order. Thus, there should
be a quantum phase transition between the two phases varying
J =K;.

To detect this phase transition, we first study the coupling
dependence of spin order parameters. In Fig. 4(a), we show m?
atq = (m,2n/3) and (27 /3, 27 /3) as a function of J, = K,
on the RC6 and RC9 cylinders. For J, = K, = 0, the order
parameter at (;r, 277 /3) is larger than the one at (27 /3, 27 /3)
[see the inset of Fig. 4(a) for the zoom in of the very small
coupling region]. As the interactions J, = K, increase, the
order parameter at (7, 2w /3) decreases slowly. On the RC6

cylinder, m3(27 /3, 27 /3) gradually increases and becomes
clearly dominant above J, = K, >~ 0.015 suggesting already
that the critical point is very close to J, = K, = 0. More-
over, on the RC9 cylinder, m§(2n /3,2m/3) shows a sharp
enhancement already at even much smaller couplings J, =
K> >~ 0.0003 and then grows gradually, suggesting a possi-
ble transition driven by infinitesimal J, = K, couplings. Both
lattice sizes with clarity indicate that the transition point is
abnormally close to the J, = K, = 0 point.

To determine whether the three-sublattice order is estab-
lished or not already in the presence of any nonzero J, = K;
couplings, we carry out the finite-size scaling of the order
parameter m3 (27 /3, 27 /3) as a function of 1/L, in Fig. 4(b).
For J, = K, =0, the quadratic fitting of L, =3,6,9 data
leads to a vanishing order (also see Ref. [41]). For nonzero
J2, K, couplings, even at the smallest couplings we have stud-
ied, the linear fitting of L, = 6,9 data clearly gives a small
finite order parameter, which supports that the order appears
to be induced by infinitesimal J, K, couplings.

To further support the emergent three-sublattice order
at very small J,, K, couplings, we investigate the spin
correlation function (S; - S;) in real space. We show the semi-
logarithmic plots of spin correlations as a function of distance
in Fig. 5. For the NN SU(3) model, the spin correlations
on both RC6 and RC9 decay very fast in an exponential
way [(S; - S;)| ~ e”"=///* and a small correlation length & ~
0.33, which agrees with the vanishing order identified through
finite-size scaling of the order parameter. On the RC6 cylinder,
spin correlations increase gradually with increasing J, K;
(but note the range explored corresponds to very small values
of these couplings). On the wider RC9 cylinder, spin corre-
lations quickly enhance even at the smallest J,, K, coupling
we have studied, which is consistent with the enhanced order
parameter in Fig. 4.

C. Lattice nematic order

Previous DMRG studies of the nematic spin liquid have
revealed a spontaneous lattice rotational symmetry breaking
with a nonzero lattice nematic order [42,46], which measures
the bond energy difference between the e, and e, directions.
Such a nematic order parameter can be defined as

1
s =N Z((Si “Sits) = (Si - Sivg)), “)

where the summations are taken for the N,, sites in the
bulk of cylinder. We show the bond correlations in the
dipolar channel in Fig. 6, along the ey, e, and e,;, di-
rections. Notice that although the cylinder geometry used
in the DMRG simulation naturally leads to a very small
bond nematicity (such geometry-induced nematicity usually
decays exponentially with growing system circumference in
the quantum states preserving lattice rotational symmetry)
[27,42], it is clear that in the nematic spin liquid state with
J» = K> =0 [see Fig. 6(a)], the bond energies along the e,
(—0.327) and e, (—0.680) directions are drastically differ-
ent, which have been shown to induce a nonzero oy after
finite-size scaling to the thermodynamic limit [41]. On the
other side, in the three-sublattice order phase at J, = K, = 1,
the bond energies along the e, (—0.419) and e, (—0.443)
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FIG. 5. J, = K; coupling dependence of spin correlation func-

tions in real space. (a) and (b) are the semilogarithmic plots of spin
correlations for different couplings on the RC6 and RC9 cylinders.
d is the distance between two sites. Particularly for the RC9, the dif-
ference between J, = K, = 0 (blue triangles) and rest of the curves
is notorious to the eye.

directions are quite close to each other [see Fig. 6(b)], con-
sistent with the preserved lattice rotational symmetry of the
state.

Because os can also be taken as an order parameter to
distinguish the two phases in the large-size limit, it is expected
that the coupling dependence of oy on finite-size systems
should also provide hints for characterizing the transition. In
Fig. 7, we show the coupling dependence of oy, as well as
its derivative, on the RC6 and RC9 cylinders. With growing
J» = K>, o continuously decreases. On the RC6 cylinder, the
derivative of og has a minimum at J, = K, >~ 0.03, which
is similar to the very small transition coupling found by
other procedures before for this cylinder in previous sections.
However, on the larger RC9 cylinder we do not observe any
minimum at nonzero J, = K; in the studied parameter region.
This result is also consistent with the transition happening
at infinitesimal couplings. The fact that the derivative has a
sudden change in slope at J, = K; ~ 0.004 could be used
effectively as an upper limit where a transition is possible.
But, regardless, it is beyond doubt that the critical point is
either at exactly zero, or at couplings J, = K, abnormally
small and likely converging to zero with increasing lattice
sizes beyond the limits of DMRG at present.

=Kx=1

-0.419 -0.419 -0.419 -0.419 -0.419

0.420

L1212
:%ﬁﬁﬁﬁ
(4212447

%%ﬁﬁﬁ

-0.443
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FIG. 6. Bond correlations (S; - S;) of the SU(3) model on the
square and triangular lattices. (a) are results for the square-lattice
model with J, = K, = 0. The blue bonds denote the NNN spin corre-
lation without direct coupling. (b) are results for the triangular-lattice
model with J, = K, = 1.0. These bond correlations are measured in
the bulk of the RC6 cylinder. The legends show the bond correlations
along the two directions. For the square (a) and triangular (b) models,
the absolute values of bond-energy differences are 0.353 and 0.024,
respectively.

In the previous DMRG studies of the SU(3) square-lattice
model with additional couplings respecting lattice symmetries
[42], the identified phase transitions from the nematic spin liq-
uid phase to other symmetry broken phases were found to be
highly consistent on the RC6 and RC9 cylinders, suggesting
relatively small finite-size effects. Here, the sudden transi-
tion from the spin liquid to the three-sublattice order when
turning on J, = K, is clear only after including the wider
RC9 system, suggesting stronger finite-size effects in this sub-
tle regime, and displaying the importance of our large-scale
calculations.

IV. SUMMARY AND DISCUSSION

By using large-scale DMRG simulations, we have studied
the spin-1 SU(3) model on the square-lattice cylinder with not
only the NN bilinear-biquadratic couplings J; = K; = 1, but
also the additional NNN couplings J, = K, along the e,y,
direction (one of the two diagonal directions). This system
allows a tuning from the square-lattice to the triangular-lattice
SU(3) model. By calculating spin correlations and different
order parameters, we find that the previously found nematic
spin liquid state in the NN SU(3) model [41] may have a tran-
sition to the three-sublattice order state at either abnormally
small, or even infinitesimal, J,, K, couplings.

In previous DMRG studies of this spin-1 SU(3) model
in Ref. [42], both additional K, and K3 couplings were also
considered, but including all the same-distance couplings and
thus preserving the lattice symmetries of the square lattice. In
that study, the nematic spin liquid is found to be quite stable
for —0.2 < K; < 0.30r—0.2 < K3 < 0.1 [42]. By sharp con-
trast, comparing with those previous results the nematic spin
liquid in the model studied here seems to be very fragile in the
presence of the added diagonal couplings. We conjecture that
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the key reason of the fragility of this spin liquid is due to the
reduced lattice symmetry in presence of these couplings. The
symmetry-reduced lattice seems to be less compatible with
a two-sublattice structure, which thus may strongly suppress
two-sublattice fluctuations and lead to the fast emergence of
a three-sublattice order. Therefore, in order to stabilize the
nematic spin liquid in the spin-1 square-lattice SU(3) model,
we believe that the key conceptual aspect is to balance two-
and three-sublattice fluctuations. We also remark that the sta-
bilization of the three-sublattice order at either abnormally
small or even infinitesimal diagonal couplings indicates the
extremely strong competition of states in the square-lattice
SU(3) model. To precisely determine the nature of the ground
state, larger system sizes beyond DMRG calculations should
be explored in future studies, which may be achieved by recent
developments in the finite PEPS simulations [47,48].
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