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Multitude of topological phase transitions in bipartite dice and Lieb lattices with interacting
electrons and Rashba coupling
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We report the results of a Hartree-Fock study applied to interacting electrons moving in two different bipartite
lattices: the dice and the Lieb lattices, at half-filling. Both lattices develop ferrimagnetic order in the phase
diagram U -λ, where U is the Hubbard on-site repulsion and λ is the Rashba spin-orbit coupling strength. Our
main result is the observation of an unexpected multitude of topological phases for both lattices. All these phases
are ferrimagnetic, but they differ among themselves in their set of six Chern numbers (six numbers because the
unit cells have three atoms). The Chern numbers |C| observed in our study range from 0 to 3, showing that
large Chern numbers can be obtained by the effect of electronic correlations, adding to the recently discussed
methodologies to increase |C| based on extending the hopping range in tight-binding models, using sudden
quenches, or photonic crystals, all without including electronic interactions.
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I. INTRODUCTION

In the seminal paper by Haldane, a tight-binding model
on a honeycomb lattice with a staggered flux was shown to
induce the integer quantum Hall effect [1], without the need
for external magnetic fields. Subsequent generalizations led
to the concept of topological insulators [2–4], widely studied
at present. A commonly used methodology employed in this
area of research is to search for models that display quasi-
two-dimensional flat bands with a nonzero Chern number in
the presence of external magnetic fields. This Chern number
equals the number |C| of chiral modes at the edges if open
boundary conditions are used. The bulk is insulating while
the edge is conducting via those chiral modes. The sign of
C reflects the sense of edge mode circulation, clockwise or
anticlockwise. There are other symmetry-protected insulators
with robust edge states, such as in quantum spin Hall in-
sulators [5] and topological superconductors with Majorana
fermions at the edges [6], all promising candidates for quan-
tum computation because the symmetry-protected edge states
are not affected by backscattering.

A generalization of the honeycomb model of Haldane leads
to the dice lattice via the addition of an extra site at the
center of each hexagon. This lattice has an entire flat band
of localized states [7,8] (see also Refs. [9–11]). As early as
the 1990s and early 2000s, the dice lattice was studied in the
context of Josephson junction arrays and bosonic systems,
already predicting three flat bands in a magnetic field [12],
subsequently confirmed via transport measurements using su-
perconducting wire networks [13]. The Lieb lattice [14] is also
receiving renewed attention due to its flat band and poten-
tial connection to superconductivity via the novel concept of
quantum geometry [15].

The dice lattice has two types of sites: some with coordi-
nation 3 and others with coordination 6, as shown in Fig. 1(a).

The unit cell contains three sites, leading to three bands, each
one doubly degenerate due to spin. The noninteracting tight-
binding model on a dice lattice including Rashba spin-orbit
coupling and in the presence of magnetic fields to break the
degeneracy (thus having a total of six bands) leads to a half-
filled ground state with |C| = 2 [8], larger than the |C| = 1 of
the Haldane model (see also Ref. [16]). Physical realizations
of this lattice are possible. For example, bulk oxides with
the generic formula A4B′B2O12, such as Ba4CoRe2O12 [17],
contain trilayers that when seen from above resemble a dice
lattice.

In a previous publication by our group, we studied ribbons
of dice lattice [18], equivalent to a dimensional reduction
from two to one of the original dice lattice into a quasi-
one-dimensional system. Qualitatively, ribbons were shown to
behave very similarly to planar dice lattices [18]. This paves
the way towards the introduction of electronic correlations,
which is a much simpler task in one-dimensional systems than
in planes due to the availability of many-body techniques that
are particularly efficient in one dimension. However, carry-
ing out density matrix renormalization group (DMRG) [19]
or Lanczos diagonalization [20] studies of interacting elec-
trons in dice ribbons is still a considerable computational
challenge. For this reason, in this publication, as an interme-
diate step towards the full introduction of correlations and
quantum fluctuations, we employ the self-consistent Hartree
Fock approximation to directly study dice planes instead of
ribbons.

In the present effort, we also study the Lieb lattice,
Fig. 1(b). Besides being bipartite like the dice lattice, we
will show that it shares many similar properties in the phase
diagram with the dice lattice. Lieb lattices have been realized
in optical lattices [21,22] and photonic crystals [23,24]. The
study of Lieb lattices including intrinsic spin-orbit coupling
(SOC) and U has been discussed in [25].
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FIG. 1. (a) Geometry of the dice lattice. Here we show a 4 × 4
cluster with four unit cells along each lattice unit vector ê1 and ê2 (in
orange). The blue (red) sites have coordination 3 (6). (b) Geometry
of a 4 × 4 Lieb cluster with four unit cells along each lattice vector
âx and ây (in orange), respectively. The blue (red) sites have coor-
dination 2 (4). Each unit cell contains three sites, marked as 1,2,3.
In both (a) and (b), the cyan arrows labeled D̂αβ indicate the Rashba
SOC directions on bonds αβ.

Most early theoretical work in this context have reported
Chern numbers |C| equal to 0, 1, or 2 in absolute value.
However, having even larger Chern numbers can provide prac-
tical improvements in potential applications. Because of the
correspondence between |C| and the number of dissipationless
edge modes, the performance of devices can be improved
by reducing the contact resistance in the quantum anomalous
Hall effect. Recent efforts have found procedures to increase
the Chern number. For example, (i) by considering hoppings
at longer distances than those already contained in the original
tight-binding Haldane model with |C| = 1, a multiplication
of Dirac points can be achieved [26]. A general procedure
to construct Chern insulators with arbitrary |C| = n, with n
an integer, employing extended hopping interactions was pre-
sented in Ref. [27]. Chern numbers as large as |C| = 5 were
reported [28]. (ii) In the context of photonic crystals using
multimode one-way waveguides, |C| as large as 4 has been
reached using ab initio calculations [29]. (iii) Employing pe-
riodic quenching and a two-band model as an example, it was
shown that Chern numbers as large as 7 can be obtained [30].
(iv) Sudden quenches can also modify Chern numbers. For

example, a system with C = 2, with two edge states, after
a sudden quench to the nontopological regime with C = 0,
can have an intermediate phase with C = 1 due to different
decay rates of the inner and outer edge modes [31]. In par-
tial summary, having a large C is potentially beneficial for
applications, and procedures to reach such a goal have been
recently proposed, as the partial list provided above shows.

All of these previous efforts have neglected electronic-
electronic correlations primarily because a rich variety of
topological phases can already be obtained at the level of non-
interacting electrons. Moreover, these models can be solved
exactly. However, the neglect of electron-electron interactions
is always an approximation [32]. In addition, correlation ef-
fects may induce novel phases, difficult to anticipate from the
noninteracting limit. Consequently, it is widely believed that
the next big challenge in quantum materials is the mixture
of topological and correlation effects. Will they compete or
cooperate? What new phases will emerge adding correlation
effects? The main technical difficulty in this context is that
electronic correlations substantially increase the difficulty in
solving the Hamiltonian that now contains both Hubbard U
interactions and spin-orbit coupling λ.

In this publication, we study the dice and Lieb lattices
in the presence of on-site Hubbard U repulsion within the
Hartree-Fock (HF) approximation. We present the results for
these two lattices in the same publication because of their
many similarities: both have unit cells with three sites (two of
those sites equivalent by symmetry) and both develop nonzero
Chern numbers in the noninteracting U = 0 limit when in
the presence of spin-orbit Rashba interactions of coupling
strength λ and an external magnetic field. By solving the self-
consistent equations numerically, we find two main results:
(i) Both lattices develop ferrimagnetic order. This confirms
previous studies by our group carried out by Lanczos on 2 × 2
unit cells (i.e., 12 sites) and DMRG on 2 × 8 ribbons (48
sites), where ferrimagnetic order was found. Moreover, the
ferrimagnetic order develops immediately turning on U , in
qualitative agreement also with the small cluster studies men-
tioned above. The flat bands in the noninteracting limit [7],
without external fields, split in the presence of the Hubbard
interaction. This HF analysis confirms the previous conjec-
ture [18] that using ribbons to study properties of planes is
qualitatively, and often quantitatively, correct. (ii) More im-
portantly, we report here unexpectedly rich phase diagrams
varying U and λ, unveiling a plethora of phases with a variety
of Chern numbers, some as large as |C| = 3. Thus, not only
by increasing the range of hoppings or by quenched-dynamic
setups can |C| be increased, but our results suggest that the
presence of strong correlation U can lead to similar effects, at
least within the HF approximation.

The organization of the paper is as follows. In Sec. II, the
model and method are described, including the Fourier trans-
form of the Hamiltonian, which amounts to a 6 × 6 matrix
at each fixed momentum. In this section, the HF approxima-
tion is also explained, as well as the technique to iteratively
find the order parameters self-consistently. In Sec. III the
results are discussed, separated into dice and Lieb lattices
subsections, both containing phase diagrams with the many
topological phases we found. Finally, Sec. IV contains the
conclusions.
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II. MODEL AND METHOD

A. Noninteracting electrons with spin-orbit coupling

The noninteracting Hamiltonian is comprised of the tight-
binding kinetic energy term and the Rashba spin-orbit
coupling term. These Hamiltonians have been studied before
in Refs. [8,18] for the dice lattice and in Ref. [33] for the Lieb
lattice. The noninteracting Hamiltonian for the dice and Lieb
lattices is defined as

HDice (Lieb) = −t
∑
r,r′,

α,β,σ

(c†
r,α,σ cr′,β,σ + H.c.) − ε

∑
r

nr,2

−λ
∑
r,r′,

α,β,σ,σ ′

(ic†
r,α,σ (D̂αβ · �τ )σσ ′cr′,β,σ ′ + H.c.),

(1)

where r, r′ are the unit cell indexes, α and β are the site
indexes within the unit cell r and r′, respectively (with α, β =
1, 2, 3), and σ =↑,↓ is the z-axis spin projection of the elec-
tron at site α within the unit cell r. λ is the Rashba spin-orbit
coupling strength that is uniform for all the bonds, while ε

is the on-site energy that affects only the red sites of Fig. 1.
�τ = τxx̂ + τyŷ + τzẑ is the Pauli matrix vector, and D̂αβ is the
unit vector in-plane and perpendicular to the bond formed
by (r, α) and (r′, β ). Both Rashba and hopping occur only
between nearest-neighbor sites. Note that the D̂αβ for the dice
lattice in Fig. 1 follows the D3d symmetry group [8].

Via the Fourier transform c†
k,α,σ = 1√

N1N2

∑
r eik·rc†

r,α,σ , the
noninteracting Hamiltonian of the dice lattice in momentum
space [8,18] becomes

HDice(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −tγ ∗
k −iλγ ∗

k+ 0 0

0 0 −iλγ ∗
k− −tγ ∗

k 0 0

−tγk iλγk− −ε 0 −tγ ∗
k iλγ ∗

k+
iλγk+ −tγk 0 −ε iλγ ∗

k− −tγ ∗
k

0 0 −tγk −iλγk− 0 0

0 0 −iλγk+ −tγk 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where γk = 1 + eik1 + eik2 and γk± = 1 + ei(k1±2π/3) + ei(k2±4π/3), with ki = k · êi. These two components are along the lattice
vectors ê1 and ê2. The annihilation operator basis used here is (ck,1,↑ , ck,1,↓ , ck,2,↑ , ck,2,↓ , ck,3,↑ , ck,3,↓ ). N1 and N2 are
the number of unit cells along the lattice vectors ê1 and ê2, respectively.

Similarly, the noninteracting Hamiltonian of the Lieb lattice, under the Fourier transform c†
k,α,σ = 1√

NxNy

∑
r eik.rc†

r,α,σ [33],

becomes

HLieb(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −tδ∗
kx+ λδ∗

kx− 0 0

0 0 −λδ∗
kx− −tδ∗

kx+ 0 0

−tδkx+ −λδkx− −ε 0 −tδky+ iλδky−
λδkx− −tδkx+ 0 −ε iλδky− −tδky+

0 0 −tδ∗
ky+ −iλδ∗

ky− 0 0

0 0 −iλδ∗
ky− −tδ∗

ky+ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where δki± = 1 ± eiki , while kx and ky are the components of the momentum along the lattice vectors âx and ây, respectively. The
basis used here is as in the dice lattice, i.e., (ck,1,↑ , ck,1,↓ , ck,2,↑ , ck,2,↓ , ck,3,↑ , ck,3,↓ ). Nx and Ny are the number of unit
cells along the lattice vectors âx and ây, respectively.

B. Interacting electrons in the Hartree-Fock approximation

To study the interaction effects, we added the on-site Hubbard repulsion term (HU = U
∑

r,α nr,α,↑nr,α,↓). This model cannot
be solved exactly, and in this study of interacting dice and Lieb lattices we used the standard Hartree-Fock (HF) decomposition
in real space described as follows:

HU ≈ U
∑
r,α

[〈nr,α,↑〉nr,α,↓ + 〈nr,α,↓〉nr,α,↑ − 〈nr,α,↑〉〈nr,α,↓〉 − {〈S+
r,α〉S−

r,α + 〈S−
r,α〉S+

r,α − 〈S+
r,α〉〈S−

r,α〉}], (4)

where 〈nr,α,σ 〉 and 〈S±
r,α〉 are the charge and magnetic order parameters, respectively, for site α within the unit-cell r and spin

projection σ .
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We simplified our HF results using that each unit cell in real space is a copy of all the rest, under the development
of translationally invariant ferrimagnetic order, as found in Ref. [18]. Thus, 〈nr,α,σ 〉 = 〈nα,σ 〉 and 〈S±

r,α〉 = 〈S±
α 〉. Under this

condition, the interaction term in Eq. (4) in momentum space becomes

HU,quantum ≈ U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈n1,↓〉 −〈S−
1 〉 0 0 0 0

−〈S+
1 〉 〈n1,↑〉 0 0 0 0

0 0 〈n2,↓〉 −〈S−
2 〉 0 0

0 0 −〈S+
2 〉 〈n2,↑〉 0 0

0 0 0 0 〈n3,↓〉 −〈S−
3 〉

0 0 0 0 −〈S+
3 〉 〈n3,↑〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

(HU,Classical )α,α ≈ U [〈S+
α 〉〈S−

α 〉 − 〈nα,↑〉〈nα,↓〉], (6)

where HU,quantum describes the quantum portion of the
HF Hamiltonian, and HU,classical describes its classical
component. Note that the basis for the interaction ma-
trix in Eqs. (5) and (6) is the same basis used for
the noninteracting Hamiltonians in Eqs. (2) and (3), i.e.,
(ck,1,↑, ck,1,↓, ck,2,↑, ck,2,↓, ck,3,↑, ck,3,↓). More compli-
cated orders, such as a spiral, would require the diagonal-
ization of much larger matrices, but here a 6 × 6 matrix is
sufficient to generate eigenvalues and eigenvectors.

Also, the presence of inversion symmetry with respect to
the coordination-6 sites of the dice lattice and C4 symmetry
in the Lieb lattice helps us in reducing the number of order
parameters. Under these symmetries, the order parameters of
the two blue sites within the unit cell must be the same.

To find the values of these order parameters, we performed
self-consistent iterations derived from minimizing the Hamil-
tonian energy with respect to the mean-field parameters while
tuning the chemical potential accordingly to remain at the
desired electronic density. In practice, we started with several
random initial configurations (or seeds) for each order param-
eter (at fixed U/t and λ/t) and inspected the lowest energy
achieved after the iterative process. Then, we compared the
ground-state energies from each of these converged results,
and we considered those with the lowest energy (sometimes
the results of different iterative processes lead to different en-
ergies due to trapping in metastable states, thus the importance
of using a variety of initial random order parameter sets).

More specifically, to reach the self-consistent solution in
the Hartree-Fock order parameters, we used the simple mixing
as described below:

|On+1
in 〉 = (1 − α)|On

in〉 + α|On
out〉, (7)

where |On
in〉 is the input array of order parameters for the

nth iteration, and |On
out〉 is calculated using the eigenspectrum

of the Hartree-Fock Hamiltonian for the given density of
electrons [34]. The chemical potential is tuned to reach the
targeted electronic density, in this case half-filling, for a fixed
very low temperature of T = 0.0001t . We used α = 0.5 in the
previous equation. The convergence error criterium of our HF
results was 10−6.

Finally, in the Appendix we show evidence that using the
full Hartree-Fock approximation, as opposed to only Hartree,
in the cases of the dice and Lieb lattices is qualitatively impor-
tant. Not only are the energies better with HF, but in addition

the Chern numbers are different from those obtained when
only using Hartree, indicating that the Fock terms are relevant.

III. RESULTS

In this section, we will discuss the Hartree-Fock results for
the two-dimensional (2D) dice and Lieb lattices. Surprisingly,
we observed many different topological phases and present
them in our phase diagrams for both respective lattices; see
Figs. 4 and 9. Each state in these phase diagrams is charac-
terized by the set of Chern numbers (C1,C2,C3,C4,C5,C6)
calculated for each of the six bands, increasing in energy from
the bottom up, arising from the 6 × 6 diagonalization of the
matrices shown in the previous section after convergence, all
at half-filling. We also observed that all topological phase
transitions in our systems occur through a band touching
point, as expected for topological phase transitions. Namely,
varying a parameter such as U or λ, first a gap exists among all
phases, then at one point a gapped region between two bands
becomes gapless when those two bands touch, and then the
gap reopens again, with a concomitant change in the Chern
numbers of the two bands involved. Concrete examples are
shown below.

A. Dice lattice results

We start by considering a 60 × 60 unit cell dice lattice
system, with 60 unit cells along each lattice vector ê1 and
ê2; see Fig. 1(a) for reference. We study the ground-state
properties of the dice Hamiltonian on this lattice in the pres-
ence of interactions at half-filling via Hartree-Fock. When
U/t = 0, degenerate flat bands are present at E = 0 in this
lattice even for λ/t nonzero [8,18] (the same occurs for the
Lieb lattice shown below). For any finite U , these flat bands
split into two nondegenerate bands around E = 0, even in the
absence of external fields. Also, with the inclusion of U/t ,
long-range ferrimagnetic order develops in the system. Our
previous DMRG+Lanczos study showed the presence of this
ferrimagnetic order for N × 2 ribbons of the dice lattice [18].
However, to confirm that this type of order dominates also in
the present 2D case, i.e., not just in ribbons, a comprehensive
study of the magnetic properties was carried out via HF.

In Fig. 2, we show that the ordering of the local spins is
indeed ferrimagnetic using HF. First, the magnitude of the
spin at site 2 (|〈S2〉|), i.e., the red sites, is always smaller
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FIG. 2. Average spin moments vs U/t at λ = 0.3t and ε = 0.6t
via Hartree-Fock at half-filling on a 60 × 60 unit-cell system used
for the self-consistency. |〈S1〉| and |〈S2〉| are the magnitude of the
spins at sites 1 and 2, respectively, and |2〈S1〉 + 〈S2〉| is the net spin
moment of the unit cell. 〈S1〉 · 〈S2〉 shows the dot product of the spins
at sites 1 and 2. The absolute values just denote the fact that de-
pending on initial seeds, the overall order parameter can be positive
or negative with equal chance, as in any ferro or ferri system, but
the smoothness of the results shows that convergence was properly
achieved even using different seeds at each point.

as compared to the magnitude of the spin at site 1 (|〈S1〉|),
i.e., the blue sites. In addition, the product of the two spins
〈S1〉 and 〈S2〉 is always negative. Moreover, at any finite
U/t both 〈S1〉 and 〈S2〉 are collinear: we verified that 〈S1〉 ·
〈S2〉/|〈S1〉||〈S2〉| = −1. With all this information, we can
safely conclude that the ordering of the spins in our 2D dice
lattice is ferrimagnetic, as conjectured in Ref. [18] studying
small clusters.

At finite U/t , we have not observed any further magnetic
transition in Fig. 2 and the magnetic ordering is consistently
ferrimagnetic for the entire range of U/t . However, there is
an abrupt change in the magnetic ordering when moving from
U/t = 0 to 0.1, the first point studied after U/t = 0 in our
grid of points, where there is a sudden jump in the magnitude
of 〈S1〉. This is because the flat band at U/t = 0 consists of
states from coordination-3 sites and even a small value of U/t
breaks the global degeneracy that causes the E = 0 flat band,
leading to a jump in |〈S1〉|. In other words, the sudden split of
the flat band separates that original band into two, each with
a different orientation of the ferri order parameter. To confirm
these results, we performed Lanczos on a 2 × 2 system, see
Fig. 3, where we observed the same features being captured
in the average local moments 〈S2

1〉. Here we also show that, as
expected by mere symmetry even with the quantum fluctua-
tions incorporated, 〈S2

1〉 and 〈S2
3〉 are identical to one another.

In Fig. 4, we display the U/t versus λ/t topological phase
diagram for a 60 × 60 unit cell dice lattice system, at ε = 0.6t .
To establish this phase diagram, we computed the first-order
Chern number of all six nondegenerate bands that arise from
the HF approximation, at half-filling, using the method in-
troduced in Ref. [35], involving individual plaquettes in the
discretized grid in momentum space of the lattice used. Unlike
in the case of the Lieb lattice, where the poles of the Berry

FIG. 3. Average local moments 〈S2
α〉 and spin-spin correlation

〈S1.S2〉 vs U/t at λ = 0.3t and ε = 0.6t , obtained via Lanczos at
half-filling on a 2 × 2 unit-cell system. The results for site 1 merely
confirm that by symmetry sites 1 and 3 must behave identically. This
is why only green is observed in the figure, while blue is hidden
behind.

curvature lie at the boundary of the first Brillouin zone, as
described later in the text, in the dice lattice they lie well
within the first Brillouin zone. Hence, the calculation of Chern
numbers here is quite straightforward.

It is interesting to note that for ε = 0 the Hamiltonian in
Eq. (1) is invariant, for half-filling, under the particle-hole

FIG. 4. U/t vs λ/t phase diagram for the 60 × 60 dice lat-
tice, calculated using the Hartree-Fock approximation. ε = 0.6t is
used here. The different colors refer to different sets of Chern
numbers (C1,C2,C3,C4,C5,C6) according to the color convention
indicated at the top. Note that all phases are ferrimagnetic, including
the (0,0,0,0,0,0) phase 1. Twelve different topological phases were
identified.
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FIG. 5. Panels (a), (b), (c), and (d) represent the bands at
λ = 0.3t for the phases (2, −2, 0, 0, 2, −2), (2, −2, 0, −1, 3, −2),
(2, −2, 0, 1, 1, −2), and (2, −3, 1, 1, 1, −2) at U/t = 2.0, 3.4, 4.4,
and 5.5, respectively. Panels (e) and (f) represent the bands at λ/t =
0.8 corresponding to the phases (0,0,0,0,0,0) and (2,−2, 0, 0, 0, 0)
at U/t = 1.0 and 3.0, respectively. All the plots were obtained using
a 60 × 60 grid in momentum space, and ε = 0.6t . The numbers next
to each band are the Chern numbers of those bands.

transformation shown below:

cr,α,σ → νσ eiπαc†
r,α,σ̄ , (8)

where νσ = 1 (−1) for σ =↑ (↓). The presence of ε �= 0
breaks the particle-hole symmetry, which leads to asymmetry
in the Chern numbers, i.e., Ci �= −C6−i, as noticed in many
phases in the phase diagram.

As an illustration, in Fig. 5 we show representative bands
for some of the phases that appear in our phase diagram.
We observed that for small values of the interaction strength
U/t , there are three different classes of bands that are
isolated in pairs (as expected from continuity starting at
U/t = 0 where there are three bands, each with degener-
acy two). For example, in Figs. 5(a) and 5(f) involving the
phases (2,−2, 0, 0, 2,−2) and (2,−2, 0, 0, 0, 0), the lower
two bands, the middle two bands, and the upper two bands
form classes of their own and each has a net sum of Chern
numbers equal to zero. Increasing U/t , the middle two bands
split further and now we have two different classes made
of three lower and three upper bands [see Figs. 5(b), 5(c),
and 5(d)] that represent the phases (2,−2, 0,−1, 3,−2),
(2,−2, 0, 1, 1,−2), and (2,−3, 1, 1, 1,−2), respectively.
Note now that the net sum of Chern numbers of the lower
three bands and the upper three bands is zero separately. This
last issue is worth remarking: in the dice lattice at half-filling,
our results predict that the three lower bands have Chern num-
bers that always add up to zero in the entire phase diagram,

FIG. 6. Band gaps �n vs U/t plot for λ/t = 0.3 and ε/t = 0.6
via Hartree-Fock at half-filling on a 60 × 60 unit-cell system. We
show �n = mink[En+1(k) − En(k)], where n is the band index. Here
we can clearly observe the topological transition points around
U/t ∼ 3.3, U/t ∼ 3.7, and U/t ∼ 4.7, respectively.

suggesting that the anomalous quantum Hall effect (AQHE)
will cancel. However, in the Lieb lattice, as shown below, this
situation will only occur in a fraction of the phase diagram.

We observed that to characterize the topological phase
transitions and find the precise locations of the transitions,
the magnetic observables, such as the ferri order parameter,
are certainly insufficient. For example, we did not detect any
noticeable modification in the first and second derivatives
of the ferrimagnetic order parameters versus U/t . This is in
agreement with the transitions being topological. Thus, we
calculated �n which is the minimum gap in energy between
the nth and (n + 1)th energy bands at fixed SOC λ = 0.3t as
an example, as in Fig. 6. Here we show that whenever a topo-
logical phase transition occurs, the bands go through a band
touching point, namely �n = 0. As an example of this behav-
ior, we will consider the phase transition occurring between
the phases (2,−2, 0, 0, 2,−2) and (2,−2, 0,−1, 3,−2). In
this case, the Chern numbers of bands 4 and 5 change from
(0,2) to (−1, 3), which implies that somewhere between these
two phases there should be a value of U/t , at fixed λ/t , where
�4 = 0. In Fig. 6, we can see that U/t ∼ 3.3 corresponds to
that touching point, confirming the topological nature of the
transitions.

Similarly, we show in detail two more such transition
points for λ/t = 0.3 at U/t ∼ 3.7 and U/t ∼ 4.7, where �4 =
0 when (2,−2, 0,−1, 3,−2) → (2,−2, 0, 1, 1,−2) and
�2 = 0 when (2,−2, 0, 1, 1,−2) → (2,−3, 1, 1, 1,−2), re-
spectively. Also, we noticed that for a specific band n
while moving from one phase to another, a net change
in Chern number of |�Cn| = 1 or 2 is observed in
the dice lattice. For example, in Fig. 6 while mov-
ing from phase (2,−2, 0, 0, 2,−2) to (2,−2, 0,−1, 3,−2)
we observe |�C4| = |�C5| = 1. Similarly, from phase
(2,−2, 0,−1, 3,−2) to (2,−2, 0, 1, 1,−2) we observe
|�C4| = |�C5| = 2. This is true for all the phase transitions
in our phase diagram in Fig. 4.

In Fig. 7, we have plotted the bands associated with the
three transition points reported in Fig. 6. At finite U/t , the
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FIG. 7. Energy bands vs k1 plots (for the specific values of k2’s
that highlight the band-touching region) at the transition coupling
values U/t = 3.3, 3.7, and 4.7, and at λ/t = 0.3 and ε/t = 0.6
via Hartree-Fock on a 60 × 60 unit-cell system. Panel (a) repre-
sents the transition point from phase (2,−2, 0, 0, 2, −2) to phase
(2, −2, 0, 1, 3, −2), whereas plot (b) represents the transition point
from phase (2, −2, 0, 1, 3, −2) to phase (2,−2, 0, 1, 1, −2). Lastly,
plot (c) represents the transition point from phase (2,−2, 0, 1, 1, −2)
to phase (2, −3, 1, 1, 1, −2).

symmetry points 
, K , and M are not necessarily the location
of the bands touching, although in practice they turned out
to be. Hence, a complete Brillouin zone check is required in
principle. For that purpose, we plotted the bands versus the
lattice momentum k1 for different values of k2’s. In Fig. 7(a),
we depict the band touching point at U/t = 3.3. This band
touching point here lies at momentum (k1, k2) = (π, 0) and
is present between bands 4 and 5. Similarly, in Figs. 7(b)
and 7(c), we explicitly show the band touching points for
the transition values U/t = 3.7 and 4.7, respectively. For
U/t = 3.7, the band touching point lies at the momentum
point (π, π ) and occurs between bands 4 and 5, whereas
for U/t = 4.7 the touching lies at momentum (π, 0) and is
present between bands 2 and 3.

B. Lieb lattice results

Let us now discuss our HF results for the Lieb lattice [14].
Similar to the dice lattice, here we start by considering a

FIG. 8. Average spins vs U/t at λ/t = 0.45 and ε/t = 0.5 ob-
tained via Hartree-Fock at half-filling on a 64 × 64 unit-cell Lieb
lattice system. The U/t = 0 jumps occur for the same reason as in the
dice lattice, namely the splitting of the E = 0 flat band immediately
when turning on U/t .

two-dimensional 64 × 64 system, with 64 unit cells along
each lattice vector âx and ây [readers are referred to Fig. 1(b)
for the geometry]. The noninteracting properties of the Lieb
lattice entail degenerate flat bands at half-filling at E = 0 [33],
as in the case of the dice lattice. Also as in the dice lattice, we
have observed that after the inclusion of the on-site Hubbard
U/t , the flat band immediately splits into two nondegenerate
bands. However, unlike the dice lattice, the splitting of the
Lieb flat band adds unexpected technical complications be-
cause special points in momentum space remain very close to
one another, even after the splitting induced by U/t and λ/t .
Thus, considerably more numerical effort is required to make
sure true gaps are formed in the Lieb lattice than in the dice
lattice.

In Fig. 8, we illustrate the magnetic properties of the
ground state via HF at half-filling. We followed the same
procedure mentioned before in the dice lattice section, and
again we concluded that the 2D Lieb lattice at finite U/t
also exhibits ferrimagnetism. We found that the magnitude
of the spin at sites 2 (|〈S2〉|) is always smaller as compared
to the magnitude of the spin at sites 1 (|〈S1〉|), while the
dot product of the two spins 〈S1〉 · 〈S2〉 is always negative.
Moreover, all the spins are always collinear. Then, this in-
formation helps us to establish that the ground state for the
Lieb lattice is ferrimagnetic, as for the dice lattice. However,
unlike the dice lattice, here we have observed a magnetic
anomaly at U ∼ 3.4t . For example, see the change in slope
in the |2〈S1〉 + 〈S2〉| curve in Fig. 8. However, it does not
influence the symmetry breaking pattern, nor the prediction
of topological phase transitions in our system. The origin of
this strange anomaly will be studied in future work, and its
presence is not crucial for the discussion that follows.

For the case of the Lieb lattice, the method of Ref. [35]
to calculate Chern numbers may have problems because the
singular portions of the Berry curvature that contribute to the
Chern number are located at the boundary of the first BZ. We
have found two solutions to this problem:
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(i) The Lieb lattice contains three sites (1,2,3) [see
Fig. 1(b)] per unit cell. Each site has one active orbital, and as
a result we have an effective three-orbital model, although the
three orbitals have different locations in the unit cell. Thus, the
wave function is not periodic in the first Brillouin zone (BZ).
The periodicity instead is of two BZs in each direction (x and
y). Thus, we can calculate the Chern number by focusing on
an extended, instead of a single unit, BZ with momentum ki

in the interval [0, 4π ) instead of [0, 2π ) for both directions
i = x, y. In this situation, the admissibility condition for the
calculation, described in Ref. [35], is now satisfied.

(ii) However, there is another procedure that leads to the
same results: using a gauge transformation will allow us to
evaluate the Chern number in a single BZ. This gauge trans-
formation effectively places the three orbitals at the same site,
i.e., it maps sites 1 and 3 into site 2, restoring the periodicity
of the wave function.

The gauge transformation is given by

U =

⎛
⎜⎝

eikx/2 0 0

0 1 0

0 0 eiky/2

⎞
⎟⎠ (9)

for the sites (1,2,3) as in Fig. 1(b). Defining H ′ = UHU −1 we
can calculate the Chern number in the traditional way since
the wave functions are now periodic in the first BZ, and the
admissibility condition described in Ref. [35] is now satisfied.
This transformation is similar in spirit to the approach in
Ref. [36] to evaluate the Z2 topological invariant for band in-
sulators. We have verified that the Chern numbers are identical
using both methods (i) and (ii). The second approach reduces
the number of points in k-space needed to compute the Chern
numbers.

In Fig. 9, the U/t versus λ/t topological phase diagram for
the Lieb lattice in the HF approximation is displayed, at ε =
0.5t . As for the dice lattice, here we computed the first-order
Chern number of all six nondegenerate bands at half-filling.
For the Lieb lattice, we used methods (i) and (ii) described
above in momentum space to verify consistency in many
points, but primarily methodology (i). As for the case of the
dice lattice, the plethora of topological phases is remarkable,
with 11 of them all displaying ferrimagnetic order. Previous
studies of noninteracting electrons with Rashba coupling, us-
ing in addition staggered magnetic fields which qualitatively
resemble the ferrimagnetic order, also reported a rich phase
diagram but with only four different topological phases [33].
Other studies of the Lieb lattice using noninteracting electrons
with variations of the real next-nearest-neighbor hopping [37]
also reported rich topological phase diagrams.

As mentioned for the dice lattice where |�Cn| = 1 or 2 is
observed as a phase transition condition, in the Lieb lattice
we noticed that for a specific band n while moving from one
phase to another, a net change in Chern number of |�Cn| = 1
is observed. This is true for all the phase transitions in our
Lieb lattice phase diagram in Fig. 9.

In Figs. 10(a) and 10(b), we display representa-
tive bands for the phases (1,−1,−1, 1, 1,−1) and
(1,−1,−1, 0, 2,−1), as an example, in the weak-coupling
regime where the original group of three bands of U/t = 0
(each doubly degenerate) can still be observed. At first

FIG. 9. U/t vs λ/t phase diagram for a 64 × 64 Lieb lattice, cal-
culated using the Hartree-Fock approximation. ε/t = 0.5 was used
here. The color convention and its relation with the Chern numbers
of the bands, from bottom to top in energy, is shown at the top of the
figure.

impression in the scale used, the bands seem to have band
touching points, namely the abnormally small gaps in this
band structure are not visible to the eye. To show that actually
there is a tiny but nonzero gap in our results, we have included
some insets where by changing the scale, using a finer grid of
points, and focusing on the apparent touching points, we show
that small gaps are actually present between these curves [see
the inset to plots 10(c)–10(g)]. Similarly, small gaps were
reported before in Ref. [33] for the same Lieb lattice but
in a staggered magnetic field. An important qualitative
observation is that if we add up the Chern number of the
lowest three bands, namely those populated at half-filling,
they add up to a nonzero Chern number, and as a consequence
an AQHE is to be expected, similarly to what occurs for the
dice lattice but in a uniform magnetic field at U/t = 0 [8],
instead of the ferrimagnetic order found here.

In Figs. 11(a), 11(b), and 11(c), we continue showing
representative bands for the phases (1,−2, 1,−1, 2,−1),
(0,−1, 1,−1, 2,−1), and (1, 0,−1, 1,−2, 1), respectively,
at larger values of U/t . Because of the large U/t , and as in
the dice lattice, three bands are now grouped together at low
energies and three at high energies. Note that in this figure, if
we fill with electrons up to half-filling, the sum of Chern num-
bers is now zero, and as a consequence no AQHE is expected.
Thus, although not a phase transition, there are two regimes
in the Lieb phase diagram, one with AQHE nonzero and one
with AQHE zero at half-filling, adding an extra interesting
detail to our results. It is remarkable that nonzero AQHE does
not occur in any of the phases of the dice lattice: this is the
only, but important, difference we found between the dice and
Lieb lattice that otherwise behave very similarly within the
HF approximation, both with many topological phases.
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FIG. 10. Representative bands for some phases shown in the
phase diagram at half-filling. Panel (a) is for U/t = 1.7 and
λ/t = 0.7, representing the phase (1, −1, −1, 1, 1, −1). Panel
(b) is for U/t = 1.1 and λ/t = 0.225, representing the phase
(1, −1, −1, 0, 2, −1). The insets panels (c) and (d) amplify points
where bands are very close to one another, illustrating that there is
an abnormally small but nonzero finite gap between the top two and
middle two bands, respectively. The gap between the two bands at
the bottom is already visible in panel (a). Inset plots (e) and ( f )
depicts the finite gap between the top two bands, whereas (g) shows
the finite gap between the middle two bands. Again, the gaps for
the two bottom lines are already visible in panel (b). All the plots
are for a 64 × 64 Lieb lattice, calculated using the Hartree-Fock
approximation. ε/t = 0.5 is used here.

IV. CONCLUSIONS

The simultaneous study of the effect of Hubbard correla-
tion and spin-orbit coupling in electronic models is widely
considered among the most important future challenges in
condensed-matter theory. In this publication, we presented the
phase diagrams of the dice and the Lieb lattices, including
Rashba spin-orbit coupling and Hubbard on-site repulsion,
within the Hartree-Fock approximation to treat electronic cor-
relation effects.

A surprisingly rich phase diagram was unveiled in both
cases. While regarding canonical spontaneous symmetry
breaking both lattices display the same ferrimagnetic order,
as predicted for the dice case in Ref. [18] using small cluster
Lanczos, our present work unveiled a plethora of “hidden”
topological transitions where the Chern numbers of the bands
change at the boundaries between phases. In these topological
transitions, gaps between pairs of bands close and reopen
varying parameters, and before and after the closing the re-
sulting Chern numbers are different. The abundance of phases
is surprising: without calculating the Chern numbers, a priori
it would have been impossible to anticipate that topological
transitions occur because finding the exact place where the
closing of the gap occurs is in principle quite difficult (we
showed a few examples). The regions of zero gap are a web-

FIG. 11. Representative bands for some typical phases at half-
filling in the phase diagram. Panels (a), (b), and (c) are for U/t = 3.0,
4.2, and 5.5, respectively, using parameters λ/t = 0.3 and ε/t = 0.5.
Part (a) contains the bands from the phase (1, −2, 1, −1, 2, −1),
(b) represents the bands from the phase (0,−1, 1, −1, 2, −1), while
(c) shows the bands from the phase (1, 0,−1, 1,−2, 1). All the plots
are for a 64 × 64 Lieb lattice, calculated using the Hartree-Fock
approximation.

like manifold of dimension 1 in the dimension 2 of the phase
diagram varying Hubbard U/t and Rashba λ/t couplings, at a
fixed on-site energy ε/t difference between sites with different
coordination number.

Moreover, as already expressed, the entire phase diagram
is ferrimagnetic, and this order parameter appears to be-
have smoothly across the topological phase transitions. This
confirms via a toy model the growing perception in the com-
munity that topology is “everywhere,” namely that a large
percentage of materials studied for years in fact have non-
trivial topological properties. The same seems to occur with
seemingly “harmless” models of interacting electrons, as our
example suggests.

In a conceptually related mean-field study of spinless
fermions on the honeycomb lattice with nearest-neighbor
repulsive interaction of strength V and in the Hofstadter
regime—i.e., adding a gauge field to produce fluxes through
the plaquettes—related effects were observed [38]. The non-
interacting system has a nonzero Hall conductivity. Increasing
V and for two occupied bands, these bands were found to
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touch at a specific V , and a redistribution of Chern numbers
led to a topological transition from Chern numbers (−1, 1) in
a topological ferrielectric phase, to Chern numbers (0,0) in a
canonical ferrielectric phase. Other phase transitions involv-
ing changes in the Chern numbers increasing the repulsion V
can be found in Fig. 3 of Ref. [38].

Returning to our results, overall both dice and Lieb lattices
behave very similarly, with the only exception being that the
lower three bands (out of the six bands of both models),
namely the three bands that are populated at half-filling, some-
times behave differently as a group. For the dice lattice, their
combined Chern numbers add up to zero in the entire phase
diagram, suggesting the absence of an anomalous quantum
Hall effect. However, for the Lieb lattice in weak coupling this
does not occur, and AQHE should be observable in a physical
realization of the half-filled weakly coupled Lieb lattices. In
strong coupling, both Lieb and dice have the three lower bands
canceling their summed Chern numbers. Of course, merely
by changing the chemical potentials, in both cases regions of
nonzero AQHE can be easily found for both lattices.

The next computational challenge is the study of ribbons
of dice and Lieb lattices employing the powerful DMRG
technique fully incorporating quantum fluctuations to confirm
our results. At present, it is possible to study comfortably up
to six legs in a ladder arrangement with DMRG. When we
recently studied ribbons of the noninteracting dice lattice [18],
we observed that the physics of two-dimensional planes—
including Chern numbers deduced from the transverse Hall
conductance σxy—can be rapidly reached by increasing the
number of legs in ladders, at least for noninteracting electrons.
σxy can be calculated with DMRG as well. This study will be
carried out in the near future.
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APPENDIX

Hartree versus Hartree-Fock Comparison

In Fig. 12 we compare results for the dice lattice using
(a) noninteracting electrons in a staggered external field, (b)
Hartree, and (c) Hartree-Fock methods at couplings U = t ,
λ = 0.3t , and ε = 0.6t . The results for (a) are reproduced
from Ref. [8] for the benefit of the readers. They were
obtained optimizing variationally external magnetic fields
associated with the two types of sites in the dice lattice, specif-
ically B1 = 0.224t and B2 = −0.0162t . In Fig. 12(b), we
show our Hartree-only results for the same U, λ, ε parameters,

FIG. 12. Central energy bands near E = 0 for the dice lattice at
U = t , λ = 0.3t , and ε = 0.6t . Panel (a) depicts the energy bands
reproduced from Ref. [8] for comparison, thus the label “Ref. [7].”
For panel (a), those authors worked with the same couplings and
evaluated the corresponding optimal magnetic fields for sublattices
1 and 2 via a variational method, with values shown as insets. The
Chern numbers for the two red bands were ±2. Panel (b) illustrates
the energy bands obtained by us when we only use the Hartree
approximation. Here, the results are the same as in (a), i.e., C = ±2,
and they illustrate that using only Hartree is basically equivalent to
optimizing external staggered fields, as intuitively expected. How-
ever, in (c) we show the complete Hartree-Fock results of the present
study. The energy in Hartree-Fock is lower than in Hartree. More
importantly, note that the results change qualitatively, i.e., now the
two red bands have C = 0 and the gap is much smaller.

and we see that the Hartree results are quite similar to the vari-
ational results. The bands are almost identical. Moreover, in
both cases the sum of Chern numbers for the first three bands
from the bottom (only one shown) is 2. However, in Fig. 12(c)
we show explicitly that when performing the full, and more
accurate, HF approximation, we obtain different results. Not
only is a lower ground-state energy obtained in panel (c) than
panels (a),(b), but in addition the sum of Chern numbers for
the first three bands is now 0 in HF as opposed to 2 in just
Hartree, showing that the Fock terms are relevant when λ �= 0.
The main message is that the Fock terms are important in this
context and they alter the physics qualitatively.
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