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Coupled Hubbard ladders at weak coupling: Pairing and spin excitations
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The Hubbard model provides a simple framework in which one can study how certain aspects of the electronic
structure of strongly interacting systems can be tuned to optimize the superconducting pairing correlations and
how these changes affect the mechanisms giving rise to them. Here we use a weak-coupling random phase
approximation to study a two-dimensional Hubbard model with a unidirectional modulation of the hopping
amplitudes as the system evolves from the uniform square lattice to an array of weakly coupled two-leg ladders.
We find that the pairing correlations retain their dominant dx2−y2 -wavelike structure and that they are significantly
enhanced for a slightly modulated lattice. This enhancement is traced backed to an increase in the strength of
the spin-fluctuation pairing interaction due to favorable Fermi surface nesting in the modulated system. We then
use a random-phase approximation BCS framework to examine the evolution of the neutron resonance in the
superconducting state. We find that it changes only weakly for moderate modulations, but breaks up into two
distinct resonances at incommensurate wave vectors in the limit of weakly coupled ladders.
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I. INTRODUCTION

The Hubbard model [1] provides a simple framework to
study how a purely repulsive interaction between fermions
can give rise to a superconducting instability. It has been
extensively studied in the context of the cuprates, for which it
was argued to provide an appropriate low-energy effective de-
scription of the electronic degrees of freedom [2,3]. Advanced
numerical approaches have been extensively used to study
this model on square lattices [4–7]. In this case, the ground
state of the doped model is still under debate [8–13] and
likely depends on details in the model parameters, such as the
plaquette diagonal hopping t ′ strength and sign. Nevertheless,
several studies have found evidence that it exhibits properties
remarkably similar to what is observed in the cuprates, in-
cluding antiferromagnetism, pseudogap and superconducting
behavior, as well as striped spin and charge density waves
[5–7]. Related to these developments in square lattices, in
the 1990s it was predicted that two-leg ladders would have
a spin gap, exponentially decaying spin correlations, and they
would superconduct upon doping [14–16]. These predictions
were experimentally confirmed [17–19]. For this geometry,
essentially exact calculations can be carried out, and the doped
model is known to support a Luther-Emery liquid phase with
power-law superconducting correlations [20–22].

Unbiased and controlled numerical calculations are neces-
sary to accurately and reliably predict the properties of the
Hubbard model in the nonperturbative regime relevant for the
cuprates, where the Coulomb repulsion between the electrons
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is of the same magnitude as their kinetic energy. On the other
hand, weak-coupling random-phase approximation (RPA-)
based approaches, while perturbative, provide a level of
simplicity and transparency, and therefore insight, that nu-
merical methods cannot offer. Recent studies have shown
that RPA-based weak-coupling approaches describe certain
behavior in Hubbard models remarkably well. For exam-
ple, systematic studies of the pairing instabilities in a
two-dimensional (2D) square lattice Hubbard model with
increasing Coulomb repulsion U found that weak-coupling
RPA predictions for the hierarchy of the leading pairing
states agreed well [23] with those of nonperturbative quan-
tum Monte Carlo dynamic cluster approximation [24] results.
Similarly, for a Hubbard model in a two-leg ladder geometry,
RPA calculations within a fluctuation exchange approxima-
tion (FLEX) were shown to capture the main features of
density matrix renormalization group) results for the magnetic
and charge dynamical response [25].

Here, we use RPA calculations to study the Hubbard model
for geometries in between these two limits, i.e., for an array
of coupled two-leg ladders. In particular, we are interested
in how the superconducting pairing correlations change when
the system evolves from the uniform square lattice limit to the
two-leg ladder geometry, as the hopping amplitude between
the ladders is reduced (see Fig. 1). A very similar system
with a unidirectional modulation of the hopping amplitudes
was recently investigated with the density matrix renormal-
ization group in the context of the question of whether striped
charge density wave order can enhance the superconducting
correlations [26]. This study found an order of magnitude
enhancement of the superconducting correlations even for
modest modulations for reasons that remain to be investigated
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FIG. 1. Illustration of the Hubbard model on a square lattice with
modulated hopping amplitudes. Here we consider nearest neighbor
hopping within the two-leg ladders (t) that run along the y direction
and between the ladders (tl = rt), as well as next-nearest neighbor
hopping within (t ′) and between the ladders (t ′

l = rt ′). The parameter
r specifies the ratio between intra- and interladder hopping ampli-
tudes. The unit cell contains two sites denoted by � = 1 (left leg) and
2 (right leg).

in more detail. For the opposite limit of an isolated two-leg
ladder, a similar enhancement was found in recent RPA-based
FLEX calculations when the rung-to-leg ratio of the nearest
neighbor hopping increases [27]. Understanding how super-
conductivity can be optimized by tuning certain aspects of
the electronic structure is not only useful for the search for
new materials with improved properties, but can also pro-
vide insight into the nature of the mechanisms responsible
for the pairing correlations. Here, we find an enhancement
of the superconducting pairing strength for a slightly mod-
ulated hopping amplitude, and show that within RPA, this
enhancement arises from an increase in the strength of the
spin-fluctuation pairing interaction.

We then use an RPA/BCS framework to study how the su-
perconducting gap affects the spin-fluctuation spectrum under
variation of the interladder coupling. For the uniform square
lattice, this formalism is known to provide a framework in
which one can understand the neutron resonance observed
in the superconducting state of the cuprates [5,28]. Here, we
examine how this neutron resonance and its dispersion evolve
as the interladder coupling decreases towards the isolated two-
leg ladder limit. We find that the resonance becomes stronger

for the slightly modulated case with the largest pairing cor-
relations. For weakly coupled ladders, the resonance is still
present, albeit at a different wave vector.

II. MODEL AND METHOD

We consider a two-dimensional Hubbard model on a
square lattice

H =
∑
i j,σ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓, (1)

with modulated hopping amplitudes along the x direction.
Here, c†

iσ (ciσ ) creates (annihilates) an electron on site i with
spin σ , niσ = c†

iσ ciσ is the electron number operator, and U
is the on-site Coulomb repulsion. As illustrated in Fig. 1,
the system can be considered as an array of coupled two-leg
Hubbard ladders that run along the y direction. We set the hop-
ping amplitudes within the ladders to ti j = −t for i, j nearest
neighbors (along the rungs) and to ti j = −t ′ when i and j
are next-nearest neighbors along the plaquette diagonals. The
hopping between the ladders is set to tl = rt for nearest neigh-
bor sites and t ′

l = rt ′ for next-nearest neighbor sites. Here, r
is a tunable parameter that controls the relative amplitudes
between intra- and interladder hoppings. The Hamiltonian in
Eq. (1) reduces to the usual uniform 2D Hubbard model for
r = 1. For r � 1, it describes a Hubbard model with modu-
lated hopping amplitudes along the x direction and uniform
amplitudes along the y direction. In the opposite limit of very
small r � 1, it describes an array of weakly coupled Hubbard
ladders. In the following, we use t = 1 as energy unit, and
set t ′ = −0.25t . Throughout the paper, the electron density is
fixed to 〈n〉 = 0.85.

We use a random-phase approximation framework to study
this model. In the nonuniform case, r �= 1, there are two
sites in the unit cell (left and right legs of the ladders), and
the model can be considered a two-orbital model, where the
two orbitals � = 1 and 2 correspond to the two sites. In
the multiorbital RPA framework [29,30], the pairing vertex
��1�2�3�4 (k, k′) for scattering a singlet pair (k ↑ �1,−k ↓ �4)
in orbitals (leg 1 or 2) �1 and �4 to a pair (k′ ↑ �2,−k′ ↓ �3)
in orbitals �2 and �3 is given by

��1�2�3�4 (k, k′) = [
3
2 UχRPA

s (k − k′, 0)U

− 1
2 UχRPA

c (k − k′, 0)U + U
]
�1�2�3�4

. (2)

Here U is a 4 × 4 matrix with elements U�1�2�3�4 =
Uδ�1�2δ�3�4δ�1�4 . The RPA spin, χRPA

s , and charge, χRPA
c , sus-

ceptibilities are

χRPA
s (q, iωm) = χ0(q, iωm)[1 − Uχ0(q, iωm)]−1,

χRPA
c (q, iωm) = χ0(q, iωm)[1 + Uχ0(q, iωm)]−1, (3)

where ωm = 2mπT is a bosonic Matsubara frequency and the
matrix elements of the bare susceptibility χ0(q) are given by

χ0
�1�2�3�4

(q, iωm) = −T

N

∑
k,ωn

G0
�3�1

(k + q, iωn + iωm)

× G0
�2�4

(k, iωn), (4)
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with G0
��′ (k, iωn) the bare Green’s function

G0
��′ (k, iωn) =

∑
μ

a�
μ(k)a�′∗

μ (k)

iωn − ξμ(k)
(5)

and ωn = (2n + 1)πT a fermionic Matsubara frequency. The
band energies (μ = ±) are

ξ±(k) = −2t cos ky ∓ ζ (k), (6)

for the bonding (+) and antibonding (−) bands with

ζ (k) = [
t2 + t2

l + 2ttl cos 2kx

+ 4 cos ky[tt ′ + tl t
′
l + (tt ′

l + t ′tl )] cos 2kx

+ 4 cos2 ky(t ′2 + t ′
l
2 + 2t ′t ′

l cos 2kx )
]1/2

. (7)

The orbital matrix elements a�
± are given by

a1
+(k) = a1

−(k) = ζ (k)√
ζ 2(k) + |ε12(k)|2

,

a2
+(k) = −a2

−(k) = ε∗
12(k)√

ζ 2(k) + |ε12(k)|2
, (8)

with

ε12(k) = −teikx − tl e
−ikx − 2 cos ky(t ′eikx + t ′

l e
−ikx ) . (9)

Carrying out the usual analytic continuation to the real fre-
quency axis, the dynamic spin susceptibility is given by

χRPA
s (q, ω) =

∑
�1,�2

χRPA
s,�1�1�2�2

(q, iωm → ω + iδ). (10)

In terms of the scattering vertices, the pairing strength is
given by the leading eigenvalue λα of

−
∑

j

∮ dk′
‖

2πvFj (k
′
‖)

�i j (k, k′)gα
j (k

′) = λαgα
i (k) (11)

with

�i j (k, k′) =
∑

�1�2�3�4

a�1
νi

(k)a�4
νi

(−k)��1�2�3�4 (k, k′)

× a�2∗
ν j

(k′)a�3∗
ν j

(−k′). (12)

Here j sums over the Fermi surfaces, vFj (k
′
‖) is the Fermi

velocity |∇kξν j (k)|, and the integral runs over the Fermi sur-
face. We generally find that for all values of 0 < r < 1, the
leading eigenvalue λd (k) has mostly dx2−y2 character. Note
that for r < 1, the C4 rotational symmetry of the square lattice
is broken, and mixing with an s-wave component is expected.

Before moving into our main results, what value of r is
realistic in our definition of hoppings via expressions such
as tl = rt? From inelastic neutron scattering (INS) experi-
ments, estimations of how robust the ladder couplings are can
be made. For example, INS studies of large single crystals
of La4Sr10Cu24O41 [31], containing copper two-leg ladders
in its atomic structure, provided approximate values for the
Heisenberg superexchange along legs Jleg = 186 meV, rungs
Jrung = 124 meV, and in between ladders J ′ = 36 meV. For the
latter the calculation was done within RPA (see footnote 19 in
Ref. [31]). This value is considered to be more uncertain than
the rest according to Ref. [31]. The theory was done using a

FIG. 2. The dx2−y2 -wave pairing strength λd versus hopping ra-
tio r for a Hubbard model with filling 〈n〉 = 0.85 and Coulomb
interaction U = 1.5t . λd is optimized for r < 1 corresponding to a
model with modulated hopping integrals along the x direction, i.e.,
effectively an array of coupled two-leg ladders.

continuous unitary transformation. Another INS study [32],
this time for La6Ca8Cu24O41, reported that for their single
crystals the values were Jleg = Jrung = 110 meV, using for
the theory component exact diagonalization of small clusters.
No results for the interladder coupling were given. Similar
numbers were obtained via optical conductivity experiments
[33] as well. The common factor of all these studies is that (a)
the rung and ladder superexchanges are similar even among
different materials and when using different techniques, (b)
the cyclic four-spin interaction within a plaquette that appears
in a higher order expansion around the atomic limit is small
but not negligible (in our case we employ directly the Hubbard
model and this plaquette-related coupling is already taken into
account), and (c) the largest uncertainty is in the coupling
between ladders, widely considered to be small because it
involves a 90◦ Cu-O-Cu bond. Due to the uncertainty in point
(c), for a crude estimation of the interladder coupling we
will use the only value available, J ′ = 36 meV [31]. With
regard to the leg and rung couplings an average of the values
quoted above will be used, namely, we employ Jleg = Jrung =
132 meV. Assuming the canonical relation between superex-
change, hopping amplitude t , and Hubbard U , i.e., J = 4t2/U ,
we deduce a ratio r = tl/t = √

36/132 = 0.5, well within the
range 0.25 < r < 1 to be discussed here. Because observables
presented below appear to converge starting at r = 0.5 and for
smaller r, we expect results at the realistic r, likely smaller
than the 0.5 previously discussed, to be approximately the
same.

III. RESULTS

We start by examining how the the leading d-wave eigen-
value λd of Eq. (11) depends on the ratio r between intra-
and interladder hopping. The Coulomb repulsion U = 1.5t
is chosen so that λd � 0.5 in the RPA treatment. Figure 2
shows the RPA results for λd (r) for 0.25 < r < 1. Remark-
ably, we find that the maximum in λd (r) does not occur for
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FIG. 3. Band structure E (k) [left panels (a), (d), (g)], static spin susceptibility χ (q, ω = 0) [middle panels (b), (e), (h)], and leading
eigenvector gd (k) [right panels (c), (f), (i)] for the Hubbard model with U = 1.5t and 〈n〉 = 0.85 for three different values of the hopping ratio
r. As r is reduced from 1 and the hopping is modulated, the response near q = (π, π ) in χ (q, 0) increases first and then decreases, leading
to the nonmononotic behavior observed in λd (r) in Fig. 2. The leading gap structure gd (k) retains mostly dx2−y2 character, but also acquires
an s-wave contribution due to the breaking of the C4 lattice rotation symmetry. In the weakly coupled limit [r = 0.25, panel (i)], the gap is
nodeless and switches sign between the bonding and antibonding Fermi surfaces. The green vector in panel (f) corresponds to q = (π, π ) in
the full Brillouin zone.

the uniform r = 1 limit. Rather, λd (r) displays a rapid initial
rise as r is reduced from r = 1, and has a maximum for
r ≈ 0.9, before dropping again to smaller values for 0.9 >

r � 0.4. The point r ≈ 0.9, where the pairing strength is
maximized, corresponds to a system in which the nearest
and next-nearest neighbor hopping amplitudes are periodi-
cally modulated along the x direction. As noted, a similar
enhancement of the superconducting correlations for modest
hopping amplitude modulations was also found in a recent
density matrix renormalization group study [26] of a Hubbard
model with similar hopping amplitude modulations. While the
precise reason for this enhancement remains unclear, it was
argued that the spin-fluctuation spectrum in the modulated
array of effective two-leg ladders is optimal for pairing (the
undoped two-leg ladders have a spin gap and thus lack the
low-energy fluctuations that are detrimental to superconduc-
tivity).

To determine the origin of the enhanced pairing strength
in our results, we now take a closer look at the variation of
the electronic structure and spin susceptibility as the hopping
ratio r is reduced from 1. Figure 3 shows the band structure
E (k) (left panels), static spin susceptibility χRPA

s (q, ω = 0)
[Eq. (10), middle panels], and d-wave eigenfunction gd (k) of
Eq. (11) (right panels) for three different values of r and the
same parameters as used in Fig. 2.

The top row [panels (a)–(c)] shows the r = 1 results for the
uniform system. Even in this case, the band structure has two
bands, due to the use of a two-site unit cell in the RPA treat-
ment. The single band of the uniform model is simply folded
along the boundaries (π/2, ky) and (−π/2, ky) of the reduced
Brillouin zone of the two-site system, to give the two bands
shown in Fig. 3(a). The susceptibility χRPA

s (q, 0) in panel (b)
shows the largest intensity at q = (π, π ) as expected. The
eigenfunction gd (k) in panel (c) has the usual dx2−y2 structure.
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Here the negative (brown) regions near k = (0, 0) originate
from the antibonding band, which implicitly contains a shift
of kx = π , and therefore correspond to k = (π, 0) in the full
Brillouin zone. These regions are simply folded back into
the reduced Brillouin zone of the two-site system, for which
k = (0, 0) is equivalent to k = (π, 0).

As r is reduced to 0.9 [middle row panels (d)–(f)], a small
gap opens in the band structure at the boundary of the reduced
Brillouin zone at k = (π/2, ky). The spin susceptibility loses
its C4 symmetry, but the peak with the highest intensity re-
mains at q = (π, π ). In fact, the intensity of this peak is much
higher, about 50%, than for r = 1. This explains the increase
in λd (r) for r = 0.9, since, according to Eqs. (11) and (2), the
pairing strength is directly related to the magnitude of the zero
frequency spin susceptibility χRPA

s (q, ω = 0). This increase in
χRPA

s (q, ω = 0) can be traced to the change in the Fermi sur-
face and improved nesting. The vertical green vector shown
in panel (f) is q = (0, π ) in the reduced Brillouin zone and
corresponds to q = (π, π ) in the full Brillouin zone on which
χRPA

s (q, ω = 0) is evaluated. It illustrates that the regions on
the Fermi surface that are connected by this vector are slightly
more parallel than the corresponding regions for r = 1, thus
leading to better nesting and an increase in χRPA

s (q, ω = 0)
for q = (π, π ). The eigenfunction gd (k) [panel (f)] changes
slightly for r = 0.9, but retains mostly its dx2−y2 structure. Due
to the breaking of C4 rotational symmetry, there is a small
admixture of an s-wave component that manifests itself in a
change in the location of the nodal points [gd (k) = 0] away
from the diagonal line kx = ky and also in a difference in the
magnitude of gd (k) for k near (0,0) [(π, 0) in full Brillouin
zone] and k near (0, π ).

For the r = 0.25 case of weakly coupled ladders [bottom
panels (g)–(i)], the band structure has separated into bond-
ing and antibonding bands, and the Fermi surface, as can
be seen from panel (i), is becoming more one dimensional.
Nevertheless, the wave vector of peak intensity in χRPA

s (q, 0)
remains near q = (π, π ), although it has become slightly in-
commensurate. The peak intensity is also reduced compared
to r = 0.9, but remains larger than for r = 1. We believe
that the reduced pairing strength λd = 0.16 for this case is
therefore due to the fact that the peak position in χRPA

s (q, 0)
has moved away from (π, π ). Even in this limit, the leading
eigenfunction gd (k) mostly retains its dx2−y2 symmetry, but
due to the structure of the Fermi surface becomes nodeless.
Moreover, it switches sign between the bonding (outer, pur-
ple) and antibonding (inner, brown) Fermi surface segments,
and shows very little variation in magnitude along these seg-
ments, especially along the antibonding segments.

We now use an RPA/BCS formalism [28,34–36] to study
the magnetic spin excitation spectrum in the superconducting
state as the hopping ratio r is tuned away from the uniform
limit. For the uniform r = 1 case, this formalism is well
known to give a resonance in χRPA′′

s (q, ω) [28,34] and thus
provides a framework in which one can understand the su-
perconducting state neutron resonance that is found in the
doped cuprates [5]. This resonance in χRPA′′

s (q, ω) is generally
found for a wave vector q that connects regions on the Fermi
surface between which the superconducting gap �(k) changes
sign, i.e., �(k + q) = −�(k), and therefore has been used as
clear evidence for an unconventional superconducting state

[5]. Here, we are studying how this neutron resonance evolves
as the hopping parameter r is varied and the system changes
from the uniform r = 1 limit to an array of weakly coupled
Hubbard ladders. Since we generally find eigenfunctions (gap
structures) gd (k) that change sign on the Fermi surface for all
values of r, we expect a resonance to occur for all r. However,
the changes in the Fermi surface under variations of r may
significantly affect the wave vector q at which this resonance
appears, as well as its energy (ω) dispersion as q is varied.

In the superconducting state, the expression for χ0 in
Eq. (4) changes and acquires an additional term from the
anomalous component F 0 of the Green’s function

χ0
�1�2�3�4

(q, iωm) = −T

N

∑
k,ωn

{
G0

�3�1
(k + q, iωn + iωm)

× G0
�2�4

(k, iωn) + F 0
�1�3

(−k − q,−iωn

−iωm)F 0
�2�4

(k, iωn)
}

(13)

with

G0
��′ (k, iωn) =

∑
μ

a�
μ(k)a�′∗

μ (k)
iωn + ξμ(k)

ω2
n + E2

μ(k)
, (14)

F 0
��′ (k, iωn) =

∑
μ

a�
μ(k)a�′

μ (k)
�μ(k)

ω2
n + E2

μ(k)
. (15)

Here Eμ(k) =
√

ξ 2
μ(k) + �2

μ(k) and �μ(k) is the supercon-

ducting gap on band μ. To determine �(k) for all k in the
Brillouin zone, one could take the RPA results for the leading
gap eigenfunction gd (k) and parametrize it in terms of crystal
harmonics [36,37]. However, since gd (k) is only known for
k on the Fermi surface, this procedure can lead to nonunique
parametrizations. In fact, for the system with r < 1, we have
indeed encountered difficulties in finding unique solutions.
This is possibly due to the fact that C4 symmetry is lost and
other s-wave crystal harmonics contribute and the absence of
orthogonality of different crystal harmonics for k only on the
Fermi surface.

We therefore take a different approach and fix �μ(k, r)
using the following procedure, which defines the gap ���′ (k)
first in orbital space: Considering only nearest neighbor pair-
ing, we set �11/22(ky) = �0 cos ky along the leg direction in
the ladder. Along the rung direction, within the ladder, we set
�12/21 = −�0 and between adjacent ladders �12/21 = −r�0,
resulting in �12(kx ) = �∗

21(kx ) = 0.5eikx + 0.5re−ikx . This re-
duces to the usual dx2−y2 -wave �0(cos kx − cos ky) gap for
the uniform r = 1 case. In the opposite r = 0 limit, it results
in a gap that is only finite within the ladders �0 along the
leg direction and −�0 along the rung direction. We then
transform ���′ (k) to the band representation to give

�μ(k) =
∑
��′

a�
μ(k)���′ (k)a�′

μ (−k). (16)

In addition, in order to describe the behavior of the order
parameter away from the Fermi surface, we have multiplied
�μ(k) by a Gaussian cutoff exp{−[ξμ(k)/�0]2} with �0 =
0.1t . The gap magnitude is set to �0 = 0.06t for all calcu-
lations, resulting in an antinodal gap magnitude of 2�0 =
0.12t for the uniform case. The resulting gap �μ(k) in band
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FIG. 4. Imaginary part of the RPA/BCS dynamic spin susceptibility χ ′′
SC(q, ω) in the superconducting state along the line from q =

(π, 0.5π ) to q = (π, 1.5π ) for the Hubbard model with 〈n〉 = 0.85 and U = 1.8t for different values of the hopping ratio r [panels (a)–
(c)]. The superconducting gap structures shown in panels (d)–(f) were used. For the uniform case (r = 1), the spectrum displays the usual
hourglass dispersion with a minimum in the resonance energy at q = (π, π ). For the weakly coupled ladders (r = 0.25), a resonance appears
at incommensurate wave vectors that disperses upward as q moves toward (π, π ).

representation is shown in Fig. 4, panels (d)–(f) for r = 1, 0.9,
and 0.25, respectively. Comparing with panels (c), (f), and
(i) in Fig. 3, one sees that this gap structure represents the
leading RPA eigenfunction gd (k) well, including in particular
the rather isotropic nature of the nodeless r = 0.25 case.

Using this gap structure, we have calculated the dynamic
spin susceptibility χRPA

s (q, ω) [Eq. (10)] using Eqs. (3) and
(13) for different r. Here we have set the Coulomb inter-
action U = 1.8t so that the resonance in the uniform case
appears at an energy ω ∼ 0.15t . The top panels (a)–(c) in
Fig. 4 show the imaginary part of χRPA

SC (q, ω) calculated in
the superconducting state for q along the line from (π, 0.5π )
to (π, 1.5π ). For the uniform r = 1 case, we find the usual
hourglasslike spectrum [28,34]. In the superconducting state,
a spin gap opens and low-energy normal state spectral weight
is transferred to a resonance at ω ≈ 0.15t , i.e., inside the
spin gap 2�0 = 0.24t . The resonance energy has a minimum
at q = (π, π ) and disperses upwards on either side. For the
slightly modulated r = 0.9 case, the spectrum is very similar
with the resonance becoming slightly stronger and moving

down in energy. This is due to the enhanced nesting for this
case as discussed already in the context of Fig. 3.

In the weakly coupled ladder case, r = 0.25, the spectrum
changes drastically and displays two columns of scatter-
ing centered at incommensurate q vectors. The resonance
completely disappears at q = (π, π ). At smaller (and larger)
qy ≈ 0.85 (1.15) a strong resonance is seen that displays a
downward dispersion as q moves away from (π, π ). This
result is consistent with the static spin susceptibility shown
for this case in Fig. 3(h), where the peak of highest intensity
has moved away from q = (π, π ) to smaller qy. For this case,
q = (π, π ) does not connect different pieces of the Fermi
surface. Rather, they are connected by q = (π, qy) with qy

reduced to ∼0.85π . As qy decreases further, (π, qy) connects
regions on the Fermi surface where the gap �μ(k) has de-
creased, explaining the downward dispersion of the resonance
with decreasing qy. Compared to the cases with r � 1, the
resonance for r = 0.25 appears at much smaller energies. This
is due to the fact that the gap �μ(k) [panel (f)] is smaller for
this case.
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IV. SUMMARY AND CONCLUSIONS

We have used a weak-coupling RPA spin-fluctuation for-
malism to analyze the superconducting pairing properties of
a two-dimensional Hubbard model with modulated hopping
amplitudes as it evolves from the uniform square lattice limit
to an array of weakly coupled two-leg ladders. For the values
of the interladder to intraladder hopping ratio r we have stud-
ied, we have found a leading pairing instability with dominant
dx2−y2 structure. The d-wave pairing strength λd is found to
have a maximum for r = 0.9 representing a system with a
slight unidirectional modulation in the hopping amplitudes.
This enhancement in the pairing correlations over the uni-
form 2D limit arises from an increase in the spin-fluctuation
pairing interaction due to increased nesting in the Fermi
surface.

We then calculated the dynamical magnetic susceptibility
in the superconducting state using an RPA/BCS formalism.
We have shown that the resonance that is found in the uni-
form model for commensurate q = (π, π ) becomes stronger
for r = 0.9, and then evolves into two distinct resonances at
incommensurate wave vectors for r = 0.25 when the two-leg
ladders are weakly coupled. These results provide insight
into the general question of how the electronic structure can
be changed to optimize superconductivity, and how these
changes in the electronic structure, and the resulting pairing
properties, manifest themselves in the magnetic excitation
spectrum that can be measured in inelastic neutron scattering
experiments.

We conclude reminding readers that the study of ladders
has received renewed attention in the context of iron-based

superconductors where it has been reported that the ladder ma-
terials BaFe2X3 (X = S, Se) become superconducting at high
pressure [38–46], similarly as the Cu ladders do. Moreover,
exotic spin states involving antiferromagnetically coupled fer-
romagnetic spin “blocks” have been studied experimentally
and theoretically [45,47–53], and predictions for such unusual
spin arrangements in diffraction neutron scattering were made
and confirmed. This is a fertile area where inelastic neutron
scattering can make an impact similar as in cuprates when
single crystals become available. Predicting their properties
within RPA in the unusual s± pairing state or in the doped
block states for an array of weakly coupled iron ladders is a
challenge to be addressed in the near future.

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [54].
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