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Abstract
We studied a multi-orbital Hubbard model at half-filling for two and three orbitals per site on a
two-site cluster via full exact diagonalization, in a wide range for the onsite repulsion U, from weak
to strong coupling, and multiple ratios of the Hund coupling JH to U. The hopping matrix
elements among the orbitals were also varied extensively. At intermediate and large U, we mapped
the results into a Heisenberg model. For two orbitals per site, the mapping is into a S = 1
Heisenberg model where by symmetry both nearest-neighbor (Si · Sj) and (Si · Sj)2 are allowed,
with respective couplings J1 and J2. For the case of three orbitals per site, the mapping is into a
S = 3/2 Heisenberg model with (Si · Sj), (Si · Sj)2, and (Si · Sj)3 terms, and respective couplings
J1, J2, and J3. The strength of these coupling constants in the Heisenberg models depend on the U,
JH, and hopping amplitudes of the underlying Hubbard model. Our study provides a first crude
estimate to establish bounds on how large the ratios J2/J1 and J3/J1 can be. We show that those
ratios appear rather limited and, as a qualitative guidance, we conclude that J2/J1 is less than 0.4
and J3/J1 is less than 0.2, establishing bounds on effective models for strongly correlated Hubbard
systems. Moreover, the intermediate Hubbard U regime was found to be the most promising to
enhance J2/J1 and J3/J1.

1. Introduction

The study of the one-dimensional spin-one (S = 1) Heisenberg chain by Haldane [1], with only
nearest-neighbor spin–spin interactions (called here ‘bilinear’ interactions), and the prediction, and
subsequent confirmation, of a spin liquid gapped ground state with protected edge states, was seminal for
the start of the field of topological materials. The Haldane chain has been physically realized in several
materials, such as CsNiCl3 [2], AgVP2S6 [3], NENP [4], and Y2BaNiO5 [5], and recently theory predicted
that doping of the fermionic two-orbital Hubbard version of the idealized Haldane chain may lead to hole
pairing and eventual superconductivity [6, 7]. Earlier related work employing t − J model approximations
also predicted superconductivity with doping although strongly competing with ferromagnetism [8].

While the solution of the Heisenberg S = 1 chain by Haldane was mathematically elegant, simpler
intuition was provided later by Affleck–Kennedy–Lieb–Tasaki (AKLT) [9] when they solved exactly an
extension of the original bilinear Hamiltonian by adding ‘biquadratic’ terms. In its exactly solvable point,
the magnitude of the ratio biquadratic to bilinear couplings is β = 1/3 [9]. At this special point, the model
has properties qualitatively similar to those of the Haldane chain, with a unique spin-gapped ground state,
exponentially decaying spin–spin correlations, and S = 1/2 spins at the edges when open boundary
conditions are used.

Our primary goal is to crudely estimate whether the recently introduced more realistic electronic
two-orbital Hubbard model realization of the Haldane chain [6] can, at large and/or intermediate Hubbard
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U and Hund JH couplings, reach the biquadratic/bilinear ratio β = 1/3 when fermionic versus pure spin
Hamiltonian models are compared at low energies. Specifically, here we solve exactly the two-site problem
of the fermionic model and represent the lowest energy states using the generalized Heisenberg
bilinear–biquadratic model in a vast region of parameter space, including varying the elements of the
hopping matrix. Our conclusion is that it is indeed possible to reach the AKLT point by suitably selecting
the values of U and JH. On the other hand, for the Bethe-ansatz solvable case we conclude that it would be
difficult to reach β = 1 using the fermionic system defined in [6]. Our efforts were extended to the
three-orbital per site Hubbard models as well, allowing us to estimate crude upper bounds for the
biquadratic and bicubic Heisenberg couplings emerging at large Hubbard U and low energy.

1.1. Previous investigations of S = 1 and S = 3/2 spin models including bilinear–biquadratic–bicubic
terms
Interest in spin Heisenberg models with spin higher than 1/2 started years ago with the search for exactly
solvable Hamiltonians, in dimension one or more, to uncover disordered spin liquid ground states in
antiferromagnets. Of particular interest were valence bond (VB) states, which could serve as toy models for
Anderson’s ideas using S = 1/2 resonant valence bonds related to high-Tc superconductivity [10]. The
AKLT model extended the notion of VB states to spins higher than 1/2 [9], as explained before. For S = 1
adding a biquadratic nearest-neighbor term with coupling J2 in addition to the standard (bilinear)
Heisenberg interaction with coupling J1, AKLT found that for β = J2/J1 = 1/3 (with J1 and J2 both
positive) the ground state is exactly solvable and indeed made out of valence bonds. This AKLT model is
defined as

HAKLT =
∑
〈i,j〉

Si.Sj +
1

3

∑
〈i,j〉

(
Si.Sj

)2
. (1)

The same model but for |β| = J2/J1 = 1 can be solved using the Bethe ansatz [11]. At this special point
the ground state is gapless with a power-law decay. This point, with J1 > 0 and J2 < 0, separates the spin
liquid gapped phase for β > −1 from a dimerized phase for β < −1. Our crude analysis below suggests
that the AKLT case β = 1/3 could be realized with a two-orbital per site electronic model at intermediate
Hubbard U, but the ratio |β| = 1 is large and may require more general electronic models.

To summarize, the isotropic S = 1 Heisenberg model with a biquadratic term was previously studied.
The phase diagram in 1D was obtained via DMRG [12]. These authors verified that for β = 1/3 the ground
state is indeed a VB state. In addition they obtained the following phases: (i) for J1 > 0 and J2 = 0 the
system has a non-degenerate disordered ground state with antiferromagnetic spin correlations that decay
exponentially indicating a spin gap (i.e. the Haldane state); (ii) at β = 1/3 with J1 and J2 both positive, the
system has the VB ground state with a spin gap (i.e. the AKLT state); (iii) |β| = 1 with both J1 and J2

positive is the critical point where the Hamiltonian is integrable with a gapless ground state [13].
Moreover, recent efforts by one of the coauthors (ED) and collaborators searched for spin liquids in two

dimensions focusing on the SU(3) point where the strength of the bilinear and biquadratic interactions are
equal β = 1, and adding further interactions [14, 15]. Spin liquids were unveiled for these spin-only
models, a conceptually interesting result. But, from our rough estimation in this publication, it is difficult to
establish which electronic fundamental multiorbital model can realize these complex spin models at large
U, with the exception of the AKLT state, which appears reachable with the two-orbital per site model
studied here. Our investigations provide crude limits based on basic Hubbard models on what range of β is
realizable in practice. Our qualitative estimation is that for larger values of β more complex fermionic
models will be required.

In addition, it was shown that for certain values of parameters higher spin Heisenberg Hamiltonians in
one dimension possess conformal invariance, property that allows an analytical determination of critical
exponents [16]. The integrable high-spin Heisenberg models are given by a Hamiltonian with a polynomial
form in powers of nearest-neighbor Heisenberg interactions ranging from 1 to 2S. This was demonstrated
via a mapping into the Wess–Zumino–Witten model at specific values of the Hamiltonian parameters
[17, 18]. Various numerical studies of higher spin Heisenberg Hamiltonians were performed to understand
whether the higher spin anisotropic Heisenberg Hamiltonians belong to the same universality class as the
S = 1/2 isotropic model or, instead, the isotropic integrable higher spin ones [19–21].

It is worth remarking that the bilinear–biquadratic S = 1 Heisenberg model was recently realized within
the context of organic materials. Specifically, using on-surface synthesis, S = 1 chains arising from
polycyclic aromatic hydrocarbon triangulene building blocks were prepared, with β = 0.09 [22]. Moreover,
in the same context, recently [23] the mapping of a Hubbard model of four-sites to a S = 1 model was also
studied, establishing an interesting connection between our effort and related ones in a different field. Other
authors have explored the S = 1 biquadratic model in two dimensions using DMRG in the context of

2



New J. Phys. 24 (2022) 073014 R Soni et al

high-Tc superconductors finding nematic phases [14], at robust J2/J1. On the other hand, the isotropic
S = 3/2 Heisenberg model has not been as much explored. The isotropic and anisotropic cases were studied
to determine if they belong to the same universality class as the S = 1/2 Heisenberg model, which was
confirmed using Lanczos and DMRG approaches [9, 19–21].

1.2. Limitations and studies in two dimensions
Spin 1 systems are also realized in two dimensional ruthenates [24], often using three-orbital per site
Hubbard models with four electrons in those three orbitals leading to a net S = 1 per site. Rich phase
diagrams were reported. But in the ruthenates, S = 1 effective Hamiltonians are rarely employed. Spin 1
systems often appear also within iron superconductors because Fe2+, with n = 6 electrons in the 3d shell, is
the usual iron valence, either in planes or ladders. However, these iron-materials are considered to reside in
the intermediate U region [25, 26] and, again, they are not often theoretically described via purely spin
systems but with multi-orbital electronic models instead [27].

We acknowledge that our study has severe limitations and for this reason it is only qualitative. For
example, the addition of a Zeeman magnetic term to the biquadratic S = 1 model was explored using
DMRG [28], and a spin nematic phase was observed in a triangular lattice [29]. The addition of single-ion
anisotropy to the S = 1 spin Heisenberg model was studied using quantum Monte Carlo and series
expansions [30], and for the model with biquadratic term [31] with density matrix renormalization group
(DMRG). Adding next-nearest neighbor terms to the S = 1 Heisenberg model with biquadratic coupling
was also explored with DMRG [32]. More recently, research on this model focused on entanglement and
topological properties [33, 34].

Note that the models studied by other groups described in this paragraph often have either a Zeeman
term, single-ion anisotropy, or next-nearest neighbor interactions. Thus, it is too early to make definite
statements on whether these models can or cannot be realized with fermionic two-orbital Hubbard models.
Consequently, our study should be considered only qualitative, but still providing a crude but valuable
estimation of how large some extra terms beyond the canonical bilinear interactions can be.

1.3. Multiples in the four sites S = 1 model
Because our study relates to a single bond, we cannot distinguish between square and triangular lattices.
Including more than a single bond, terms such as (Si · Sj)(Si · Sk) with sites (i, j, k) belonging to the same
plaquette, also appear in the large U expansion rendering the study too complex. Here, we explain the
complexity that the mere increase from two to four sites would introduce into the analysis, and intuitively
provide the reason why using two sites we can still obtain useful estimations of the biquadratic coupling.

In general, the mixing of two spins S1 and S2 produces states with total spin in the range of spin states
given by: (S1 + S2), . . . , |S1 − S2|, which can also be represented by the following form:

S1 ⊗ S2 = (S1 + S2) ⊕ · · · ⊕ |S1 − S2|. (2)

For the case of a two-site spin-1 system, this leads to 1 ⊗ 1 = 2 ⊕ 1 ⊕ 0, i.e. a total of 9 spin state
multiplets: 1 singlet, 3 degenerate states in a triplet, and 5 degenerate states in a quintuplet, represented by
0, 1 and 2 on the right hand site of the equation starting this paragraph.

For a four-sites spin-1 system, the decomposition into multiples can start similarly by using two pairs of
two-site spin-1 systems 1 ⊗ 1 = 2 ⊕ 1 ⊕ 0, and then mix them with one other. Moreover, from merely
counting states (we have three per S = 1) we know the total number of states must be 9 × 9 = 81. How do
they decompose into multiplets? Mathematically,

(2 ⊕ 1 ⊕ 0) ⊗ (2 ⊕ 1 ⊕ 0) = (2 ⊗ 2) ⊕ (2 ⊗ 1) ⊕ (2 ⊗ 0)

⊕ (1 ⊗ 2) ⊕ (1 ⊗ 1) ⊕ (1 ⊗ 0)

⊕ (0 ⊗ 2) ⊕ (0 ⊗ 1) ⊕ (0 ⊗ 0), (3)

where,

(2 ⊗ 2) = 4 ⊕ 3 ⊕ 2 ⊕ 1 ⊕ 0,

(1 ⊗ 1) = 2 ⊕ 1 ⊕ 0,

(0 ⊗ 0) = 0,

(2 ⊗ 1) = (1 ⊗ 2) = 3 ⊕ 2 ⊕ 1

(2 ⊗ 0) = (0 ⊗ 2) = 2

(1 ⊗ 0) = (0 ⊗ 1) = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4)
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In summary, we have 3 singlets (one state each), 6 triplets (three states each), 6 quintuplets (five states
each), 3 septuplets (7 states each), and 1 nonuplet (9 states each). The total number of multiples is 19.

This large number clearly illustrates how difficult would it be to use a four-site cluster to estimate
coupling strengths from the two-orbital Hubbard model. The task of deducing an analytical expression for
J2/J1 is impossible. Moreover, the relative energy order of these 19 multiples states may start with a singlet
and finish with the nonuplet, but, in between, the states surely will be arranged in a complicated manner. In
addition, more importantly, a four-site system will require other terms in the effective spin Hamiltonian, as
the t/U expansion indicates, such as those involving the four different spins in two dot products. Having
these extra terms will dilute the importance of the biquadratic term and likely lead to a weaker value of J2/J1

than found using only two sites. Thus, we believe in order to crudely estimate the maximum range of the
ratio J2/J1, a two-site system is the most practical way to proceed.

2. Model and method

2.1. Multi-orbital Hubbard model
For the exact-diagonalization calculations, we work with the multi-orbital Hubbard model mentioned in
[6, 7] and described as follows:

HH = −
∑

〈i,γ;j,γ′〉;σ
tγγ′

(
c†i,γ,σcj,γ′ ,σ + h.c.

)
+ U

∑
i,γ

ni,γ,↑ni,γ,↓ +

(
U ′ − JH

2

)∑
i,γ<γ′

ni,γni,γ′

− 2JH

∑
i,γ<γ′

Si,γ · Si,γ′ + JH

∑
i,γ<γ′

(
P†

i,γPi,γ′ + h.c.
)

, (5)

where c†i,γ,σ (ci,γ,σ) creates (annihilates) an electron at site i, with orbital γ, and spin projection along the
z-axis σ. The first term represents the inter- and intra-orbital hopping between only nearest-neighbor sites.
General hopping matrices for the two- and three-orbitals per site cases are displayed in equations (6) and
(7), respectively, and in our study we allowed for the hoppings to vary over broad ranges to search for the
largest ratios of Heisenberg interactions. The second term is the standard onsite Hubbard repulsion U
between spins ↑ and ↓ electrons, at the same orbital. The third term contains the onsite inter-orbital
repulsion, with the usual relation U′ = U − 2JH due to rotational invariance. The fourth term involves the
Hund’s coupling JH that explicitly shows the ferromagnetic character between orbitals. The last term
represents the onsite inter-orbital electron-pair hopping Pi,γ = ci,γ,↑ci,γ,↓. All these terms in the Hubbard
model are canonical.

The general hopping matrices used here for the exact-diagonalization calculation of two- and
three-orbitals per site on the two-site system are:

t2−orb
γγ′ =

(
t11 t12

t21 t22

)
, (6)

t3−orb
γγ′ =

⎛
⎝t11 t12 t13

t21 t22 t23

t31 t32 t33

⎞
⎠, (7)

where tαβ represents the nearest-neighbor hopping element from orbital α to orbital β. Due to rotational
symmetry of the two-site system, tαβ = tβα. This reduces the number of hopping elements from N2

o to
No(No + 1)/2, where No is the number of orbitals.

2.2. Heisenberg model with higher order terms
The allowed high-order Heisenberg model for any spin-S system can be written generically as:

HS =
∑
〈i,j〉

2S∑
n=1

Jn

(
Si.Sj

)n
. (8)

Using the above equation we can write the general Hamiltonian for S = 1 spin system as:

H1 =
∑
〈i,j〉

[
J1

(
Si.Sj

)
+ J2

(
Si.Sj

)2
]
. (9)
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Figure 1. Energy (E/J1) vs J2/J1 for the two-site S = 1 Heisenberg model. The shaded area depicts the region with ordering
singlet, triplet, and quintuplet in increasing order of energies, as it occurs in the more fundamental two-orbital per site Hubbard
model.

Figure 2. J2/J1 vs U/t11 for a two-site two-orbitals per site system via exact-diagonalization, at the various JH/U indicated. The
hopping parameters are t22 = t11 and t12 = t21 = 0 for this example, namely the unit matrix. To help the readers, the hopping
matrix is presented as inset in the plot (the same will be done in all other figures below). The bandwidth for this set of hoppings
is W = 4t11. Here and in all figures below ‘bandwidth’ is defined with regards to the tight-binding model with the hoppings used
here but in the bulk limit.

We diagonalize the Hamiltonian in equation (9) for the two-site system and obtain the following three
energy levels:

Es = −2J1 + 4J2, Singlet s

Et = −J1 + J2, Triplet t

Eq = J1 + J2, Quintuplet q

⎫⎪⎪⎬
⎪⎪⎭
. (10)

In figure 1, we illustrate the plot of these energy levels vs J2/J1. For J2/J1 � 1/3, the ordering of these
levels strictly follows the singlet–triplet–quintuplet sequence in increasing order of energies. This is vital as
the same sequence appears in the more fundamental two-orbital per site Hubbard model in strong
coupling.

Of course, when comparing these energies mentioned in equation (10) with the Hubbard results
obtained from exact-diagonalization in the strong coupling regime a constant offset in energies must be
included, leading generically to E′

a = Ea + Eoff where a = s, t, q and Eoff is the offset energy. Based on this
information and the energies provided in equation (10) one can exactly derive the ratio J2/J1 in terms of the
Hubbard energies obtained from exact-diagonalization E′

a’s as:

J2

J1
=

E′
q − 3E′

t + 2E′
s

3(E′
q − E′

t)
. (11)

The above equation is used to calculate exactly the values of J2/J1 in our two-site two-orbitals per site
exact-diagonalization study, in the range where the Hubbard model energies are in the expected
singlet–triplet–quintuplet order, starting from the singlet ground state (this assumption tends to break
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Figure 3. J2/J1 vs U/t11 for a two-site two-orbital per site system via exact diagonalization, at the various JH/U indicated. The
hopping parameters are t22 = t12 = t21 = t11. The bandwidth for these set of hopping parameters is W = 8t11 (for definition of
bandwidth see caption of figure 2).

Figure 4. (a) J2/J1 and (b) J3/J1 vs U/t11 for the two-site three-orbitals per site system obtained via exact diagonalization, at the
values of JH/U indicated. The hopping parameters for this particular plot are t11 = 1.0, t22 = 0.25, t33 = 0, t12 = 0.75,
t23 = 0.125 and t13 = 0. They are also shown in an inset. The bandwidth for this set of hoppings is W ≈ 5.86t11 (for definition of
bandwidth see caption of figure 2). The color convention for JH/U, as well as the hopping matrix, is common to both panels.

down only in weak coupling, already outside the range of the Heisenberg model description, as discussed
below).

Similarly for S = 3/2 the high-order Heisenberg Hamiltonian reads:

H 3
2
=

∑
〈i,j〉

[
J1

(
Si.Sj

)
+ J2

(
Si.Sj

)2
+ J3

(
Si.Sj

)3
]
. (12)

We diagonalize this Hamiltonian in equation (12) for the two-site system and obtain four energy levels:

Es =
−15

64
(16J1 − 60J2 + 225J3), Singlet s

Et =
−11

64
(16J1 − 44J2 + 121J3), Triplet t

Eq =
−3

64
(16J1 − 12J2 + 9J3), Quintuplet q

Ev =
9

64
(16J1 + 36J2 + 81J3), Septuplet v

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

Following the same reasoning as in the case of S = 1, i.e. considering an offset energy, then
E′

a = Ea + Eoff where a = s, t, q, v, and using the set of equations provided in equation (13) the analytical

6
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Figure 5. J2/J1 vs U/t11 for a two-site three-orbitals per site system obtained via exact diagonalization, at the ratios JH/U shown.
The color convention is the same in (a) and (b). The hopping parameters chosen for panel (a) are t11 = 1.0, t22 = 0.25, t33 = 0,
t12 = 0.75, t23 = 0.25 and t13 = 0, with bandwidth W ≈ 5.9t11 and in (b) are t11 = 1.0, t22 = 0.25, t33 = 0, t12 = 0.75, t23 = 0.5
and t13 = 0, with bandwidth W ≈ 6.05t11 (for definition of bandwidth see caption of figure 2). The hopping matrices are shown
also in each panel (inset). The ratios J3/J1 are not shown because they are considerably smaller than J2/J1, as in figure 4.

Figure 6. (a) J2/J1 and (b) J3/J1 vs U/t11 for a two-site three-orbitals per site system obtained via exact diagonalization, at the
several JH/U’s indicated. Color convention is common to both panels. The hopping parameters chosen for the plot are
t11 = t22 = 1.0, t33 = 0 and tαβ = 0 for all α �= β. The bandwidth for these set of hopping is W = 4t11 (for definition of
bandwidth see caption of figure 2).

expression for J2/J1 and J3/J1 in terms of E′
a’s for S = 3/2 becomes

J2

J1
=

4

3

(
29E′

v − 85E′
q + 81E′

t − 25E′
s

)
(
81E′

v + 115E′
q − 351E′

t + 155E′
s

) , (14)

and
J3

J1
=

16

3

(
E′
v − 5E′

q + 9E′
t − 5E′

s

)
(
81E′

v + 115E′
q − 351E′

t + 155E′
s

) . (15)

Equations (14) and (15) were used for calculating the values of J2/J1 and J3/J1 in our two-site three-orbitals
per site exact-diagonalization study, respectively. Here, we do not include a figure like figure 1 for the case of
S = 3/2 because it would require a three-dimensional plot of energy vs J2/J1 and J3/J1 which would be
difficult to visualize. For this reason, we simply have included here the relevant equations that were
employed.

3. Results

In this section, we will discuss our numerical results via exact-diagonalization for the two-site system. Note
that not only U and JH are varied, but the most time-consuming portion of the calculation arises from the
large number of hopping amplitude ratios studied (using t11 as unit of reference). Specifically, we analyzed
hundreds of different ratios of Hamiltonian parameters and in all cases mapped the low-energy results into

7
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Figure 7. J2/J1 vs U/t11 for a two-site three-orbitals per site system using exact diagonalization, at several ratios of JH/U (color
convention is the same for both panels). The hoppings chosen for panel (a) are t11 = t22 = 1.0, t33 = 0.125 and tαβ = 0 for all
α �= β and for panel (b) are t11 = t22 = 1.0, t33 = 0.25 and tαβ = 0 for all α �= β. These hoppings are also shown in the insets.
The bandwidth for both sets of hopping is W = 4t11 (for definition of bandwidth see caption of figure 2).

Figure 8. (a) and (b) Double occupancy (as defined in the vertical label) vs U/t11 for the two-site two-orbitals per site system
obtained via exact diagonalization. The Hund coupling is fixed to JH/U = 0.25 because this number is considered realistic for
some materials such as the iron superconductors. The hopping parameters are shown as insets, and match the parameters shown
in the section of two-orbitals in the main portion of the text. Results are shown for the first singlet, triplet, and quintuplet states
in the spectrum as colored indicated (the last one being ferromagnetic then has zero double occupancy). The results show that at
the lower extreme of the range investigated double occupancy is only 0.10, and decreases fast with increasing U/t11. Thus, charge
fluctuations do not play a significant role in most of the important range in our reported results, and in our qualitative
conclusions.

the Heisenberg models. On average we run over 30 values of U and 12 values of JH/U, for each fixed set of
hopping amplitudes. This already amounts to 360 runs. For two orbitals per site, we used 36 combinations
of t22/t11 and t12/t11 for a total of 360 × 36 = 12 960 cases. For three orbitals per site, we used 196
combinations of t22/t11, t33/t11, t12/t11, t13/t11, and t23/t11 for a total of 360 × 196 = 70 560 cases. Crudely,
the total number of cases studied is approximately 4 ×104, giving to the readers an idea of how complex
these multivariable calculations are. We automatized the fittings, and from the many results we isolated
approximately 150 sets of data containing the largest ratios for J2/J1 and J3/J1. Those special cases were
plotted and visually inspected. From that set, the very small subset displayed in this section is the subset
that, in our judgement, best represents cases where the Heisenberg coupling ratios are robust in absolute
value, because our primary aim is to establish upper bounds on those quantities. These ratios can be
positive or negative.

3.1. Two-site two-orbitals per site
First, we present our two-site two-orbitals per site exact-diagonalization results. All the results below have
the same low-energy order: first a singlet (total spin STot = 0) for the ground state, then a triplet (STot = 1)
for the first excited state, and finally a quintuplet (STot = 2) for the second excited state.

In both figures 2 and 3 we first performed exact diagonalization of the multi-orbital Hubbard model
equation (5). The hopping parameters used is in an inset, for better visualization, and also in the caption.
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For each JH/U, we identified the range of U that gives the ordering: singlet, triplet and quintuplet for the
ground-state, first excited-state, and second excited state, respectively. The energies of these respective states
were used to calculate J2/J1 using equation (11). Note that with reducing U/t11 in the horizontal axis,
curves end abruptly. The reason is that the order singlet–triplet–quintuplet is altered at smaller values of
U/t11 and the fitting is no longer possible. This occurs both for two and three orbitals, namely for both
S = 1 and S = 3/2 spins.

Our main result is that the largest ratio observed (in absolute value) is close to 0.4. For a wide variety of
‘less symmetric’ hopping amplitudes, namely employing neither the unit matrix or the matrix with all
elements equal, we observed that |J2/J1| is smaller than those in figures 2 and 3. Two important details are:
(a) the ratios can be both positive and negative and for this reason the two examples shown were chosen. In
both cases, positive and negative, the largest magnitudes of the ratios are not too different. (b) As obvious
from the figures, the largest ratios are obtained as U is reduced from very strong coupling. This makes sense
because in the limit where a perturbative expansion in t11/U is valid, J1 is the lowest order and J2 the next
leading order. Naturally, their ratio of coefficients scales as t11/U and J2/J1 converges to zero as U diverges.
As a consequence, we can firmly conclude that the most promising region to observe the effects of the biquadratic
term is U/W ∼ 1, i.e. the intermediate coupling regime. Intuitively, this conclusion appears qualitatively valid
independently of the cluster size studied. This region of parameter space often contains a variety of exotic
phases because here several tendencies are in close competition leading to ‘frustration’ effects which are not
obvious at the Hamiltonian level.

3.2. Reason for having both signs for the coupling ratios
Regarding the two possible signs of J2/J1, at first sight a negative J2/J1 is not unexpected, given the
prevalence of minus signs in the math arising from the anticommutation rules of fermions when they move
on a two-site cluster with two orbitals. The complexity of the calculations prevents us from providing an
intuitive rule based on the two-orbital Hubbard model parameters for when biquadratic couplings are
positive or negative. As illustration, we refer readers to reference [35], to be discussed in more detail in
section 4, where strong coupling perturbation theory in t11/U for two sites was reported. The expressions
for the higher order terms, such as the biquadratic, contain combinations of positive and negative terms
that may lead to positive or negative J2. The same comment is valid for the case of three orbitals.

However, fortunately still some simple intuition can be provided. Analyzing the key equation (11),
clearly the sign of the ratio J2/J1 is controlled by the numerator, because in the range we focus on, the
denominator is always positive. Thus, the rule to obtain a positive J2/J1 is that E′

q − 3E′
t + 2E′

s > 0, while for
a negative J2/J1 the condition must be E′

q − 3E′
t + 2E′

s < 0. In simpler words, it is the location of the triplet
state inside the range of the quintuplet-singlet energy gap that regulates the sign of J2/J1. To put it another way,
the closer the triplet is to the singlet ground state energy in comparison to the quintuplet, the higher the
chances that J2/J1 is positive. The precise location of couplings where the switch in sign occurs certainly will be
cluster size dependent, but the conclusion that there is a sign changing location is likely present in all clusters.

3.3. Two-site three-orbitals per site
Here, we present our two-site three-orbitals per site exact diagonalization results. All the results below have
the same energy ordering: singlet (STot = 0) for the ground state, triplet (STot = 1) for the first-excited state,
quintuplet (STot = 2) for the second-excited state, and septuplet (STot = 3) for the third-excited state. The
latter originates in the three orbital per site nature of the problem, and it does not appear for two orbitals
per site. The extra spin manifold occurs because the total number of electrons in the system is 6 which
allows total spins 3, 2, 1, and 0, contrary to a total of four electrons in the previous subsection.

Unlike the two-site two-orbital per site case, here for three orbitals we observe that it is the ‘less
symmetric’ (as mentioned in section 3.1) hopping amplitudes that give large ratios |J2/J1| and |J3/J1|.

Qualitatively, the conclusions of figure 4 resemble those for the two-orbital case: the ratios are the largest
as U/t11 decreases from strong coupling. Thus, the intermediate coupling U/W ∼ 1 is the most promising
to observe sizable values for J2 and J3. Also, the largest values of J2/J1 are similar to those of the two-orbital
per site case. However, as expected from the strong coupling expansion, J3/J1 is an order of magnitude
smaller than J2/J1 because it requires the next order in the large U expansion to develop, as compared with
J2/J1.

Figure 5 illustrates the dependence of the results varying slightly the hopping amplitudes. Focusing on
the matrices contained in both panels, the only difference between both cases resides in t23, which varies by
a factor 2. However, this relatively small modification leads to a reduction in approximately a factor two in
J2/J1. This sensitivity to small changes in the hoppings is somewhat surprising. Such effect manifest the
most at intermediate couplings, while in strong coupling the ratios are less sensitive to small hopping
modifications.
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In figure 6, we illustrate the case where the hoppings reside only along the diagonal, but one of them, i.e.
t33, is zero. In this case the fits lead to negative values for both J2/J1 and J3/J1. The strength is also reduced
when compared with figure 5. In figure 7, J2/J1 is shown now increasing t33 from zero, as compared with
figure 6. Here, as t33 increases the largest value of the J2/J1 decreases slowly, indicating that to find the
maximum possible value of J2/J1 the hopping amplitude t33 must be zero. Similarly, we tune other hopping
amplitudes and find the best possible scenario where we achieve the largest value of J2/J1 and J3/J1.

4. Discussion and conclusions

In our study we focused on a two-site electronic multi-orbital Hubbard model to deduce, crudely due to the
size limitation, what range of biquadratic and bicubic Heisenberg couplings are reasonable to expect at
intermediate and large values of the Hubbard U. In particular, for two orbitals per site we focused on how
large the biquadratic–bilinear ratio strength J2/J1 can become. First, we noticed that J2/J1 can be of both
signs, a robust conclusion that intuitively should be size independent. Then, regarding its magnitude it
appears limited to ∼0.4 or less. This is sufficient for the AKLT model [9] to be realized employing electronic
models. It would be interesting to investigate if these associated electronic model—namely selecting suitable
Hubbard U, Hund coupling JH, and hoppings such that J2/J1 = 1/3—will also lead to a valence bond
ground state, although likely the said electronic model will not be exactly solvable. On the other hand, we
estimate that the exactly solvable case J2/J1 = 1 in principle cannot be realized with the electronic model we
used. With two orbitals we systematically found that biquadratic and bicubic couplings are smaller than the
bilinear coupling by at least a factor 2. For the case of spin S = 3/2, using three orbitals per site, the
conclusions are similar: once again J2/J1 cannot exceed ∼0.4, while J3/J1 is even smaller by another factor of
approximately 2. It may arise also the doubt on whether charge fluctuations may be so strong that they can
invalidate the mapping into a spin-only Hamiltonian. In the appendix we have addressed this matter for
two orbitals for simplicity. While at the lowest U/t11 studied the charge double occupancy is 0.1 (already a
small number), this number decreases very fast with further increasing the Hubbard coupling, thus
justifying the use of an effective spin model to map results of the two-orbital Hubbard model.

Note that the formidable challenge of using four-site clusters involving 19 multiplets is unrealistic (note
that for only two sites already a set of 70 560 different couplings were investigated in this effort because the
hoppings were also varied over broad ranges). However, we believe that the primary conclusions of our
effort are crude but qualitatively robust: (i) the biquadratic coupling cannot be as large as the bilinear,
(ii) these couplings arise with the two possible signs, (iii) the best range of U to enhance the biquadratic
and bicubic strength is intermediate U.

Our study also suggests that spin-only models mixing bilinear, biquadratic, and bicubic terms that are
often studied searching for quantum spin liquids should impose constraints on the parameter space
explored. To realize spin liquids using electronic models the most optimal path continues being the addition
of hoppings beyond nearest-neighbors to create explicit frustration.

Our qualitative conclusions using a two-site multiorbital Hubbard model are, remarkably, in good
agreement with calculations using a two-orbital per site Hubbard model [35], carried out perturbatively at
small t/U up to fourth order (first and third order cancel; the second order gives the canonical bilinear
Heisenberg model, and the fourth order the biquadratic contribution). Using this fairly different procedure,
nevertheless conclusions similar to ours were reached: J2/J1 is limited at large U, providing confidence to
the results of our calculations. These results, valid at any value of U because they do not rely on
perturbation theory, suggest strongly again that intermediate U is more promising than strong U. Still, even at
intermediate U, J2/J1 cannot reach values above 0.4. The methodology proposed in reference [36], adding
to the problem an extra orbital residing in a neighboring site, may reduce J1, providing a promising path to
enhance J2/J1 [37]. Our next goal is to investigate the effect of on-site spin–orbit coupling in these two-site
multi-orbital Hubbard systems [38] and estimate the range of biquadratic–bilinear Heisenberg couplings in
these conditions.
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Appendix. Charge fluctuations

Because we are exploring not only the strong coupling region, but also the more promising intermediate
U/t11 regime (more promising because in there, the J2/J1 and J3/J1 are enhanced the most), it is important
to consider how robust are the charge fluctuations in such intermediate coupling regime. If charge
fluctuations are important, then the mapping into a spin only model is less reliable.

In this appendix, we report the double occupancy, 〈nγ,↑nγ,↓〉 where the orbital index γ could be 1 or 2
(note that the two orbitals give the same results because we do not have a crystal field in the Hamiltonian,
to avoid adding even more complexity in the calculations). Results are in figure 8, where we show the
double-occupancy expectation value. The maximum value it reaches in the range investigated, which
matches the range shown in the main text for two orbitals, is 0.10 and it decreases very fast with increasing
U/t11. We conclude that in most of the region investigated charge fluctuations are actually not important,
and thus our methodology is justified.
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