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Topological flat bands in a kagome lattice
multiorbital system
Satoshi Okamoto 1✉, Narayan Mohanta1, Elbio Dagotto 1,2 & D. N. Sheng3

Flat bands and dispersive Dirac bands are known to coexist in the electronic bands in a two-

dimensional kagome lattice. Including the relativistic spin-orbit coupling, such systems often

exhibit nontrivial band topology, allowing for gapless edge modes between flat bands at

several locations in the band structure, and dispersive bands or at the Dirac band crossing.

Here, we theoretically demonstrate that a multiorbital system on a kagome lattice is a

versatile platform to explore the interplay between nontrivial band topology and electronic

interaction. Specifically, here we report that the multiorbital kagome model with the atomic

spin–orbit coupling naturally supports topological bands characterized by nonzero Chern

numbers C, including a flat band with jCj ¼ 1. When such a flat band is 1/3 filled, the non-

local repulsive interactions induce a fractional Chern insulating state. We also discuss the

possible realization of our findings in real kagome materials.
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F lat-band systems have been proposed as interesting theore-
tical models to prove the existence of ferromagnetic ordering
with itinerant electrons1–4. Theoretical developments in

such flat-band systems have been made almost in parallel with
those in the widely discussed topological insulators (TIs)5–8. The
nontrivial topology of electronic bands in a kagome lattice, one of
those flat-band systems, has been extensively studied9–18.

The experimental quests for topological materials with kagome
lattice have also been carried out. Many of such experimental
efforts were stimulated by the prediction of Weyl semimetals19,20,
including intermetallic compounds involving Co21–25, Fe26–29,
Mn30–32, and van-der-Waals compounds33, as well as optical
lattices34,35. More recently, the coexistence of superconductivity
and nontrivial band topology was reported in a kagome
compound36–39.

When a flat band is partially occupied by electrons, the Cou-
lomb repulsive interactions could become dominant over the
electronic kinetic energy. This situation is already realized in two-
dimensional electron gases under applied magnetic fields, where
flat bands correspond to Landau levels. Fractional quantum Hall
(FQH) effects were thus discovered40,41. An exact numerical
analysis made an important contribution by demonstrating that
quantum fluctuations are essential to stabilize FQH states over
charge density wave states42. Once the charge excitation gap is
induced at a fractional filling, the property of FQH states is ele-
gantly explained using effective theory43.

Recently, further intriguing proposals were put forward by
considering flat bands with nontrivial topology and repulsive
interactions, whereby FQH states could be generated without
having Landau levels, called fractional Chern insulators (FCIs).
These proposals considered single-band models on a kagome
lattice44,45, checkerboard lattices46–50, a Haldane model on a
honeycomb lattice, and a ruby lattice45, as well as multi-band
models on a buckled honeycomb lattice51, a triangular lattice52,
and a square lattice for the mercury-telluride TI45. It was later
revealed that quantum Hall states realized in flat band systems
and those realized under an applied magnetic field are adiabati-
cally connected53. When realized in real materials, FCI states in
flat band systems could become a vital element of topological
quantum computing54,55. Based on numerical results44–52, the
possibility of FCI states was suggested in some flat band
systems12,15,17. However, the material realization of such FCI
states has yet to be demonstrated as theoretical proposals often
focus on simple one-band models and other proposed systems
have small band gaps.

Motivated by the recent experimental realization of kagome
materials, where multiple transition-metal d orbitals are active
near the Fermi level, we consider in this work a multiorbital

itinerant-electron model on a two-dimensional kagome lattice.
With the atomic spin–orbit coupling (SOC), this model shows
multiple topological phases, including spin Hall insulators when
spin splitting is absent and Chern insulators when spin splitting is
induced. Furthermore, this model exhibits flat bands having
nonzero Chern number as in a single-band kagome system10. We
found that non-local Coulomb interactions induce FCI states
when such a flat band is fractionally occupied by electrons. Note
that our approach employs the original on-site local source of the
SOC, while most of simplified models widely employed in other
efforts assume the form of SOC simply based on symmetry
considerations. Thus, our work relies on more fundamental
foundations. Our model calculation is particularly relevant to
CoSn-type intermetallic compounds when a single kagome layer
becomes available.

Results
Theoretical model. To begin with, we set up a multi-orbital tight-
binding model on a kagome lattice

Ht ¼ � ∑
r r0h i

∑
αβσ

tαβr r0c
y
rασcr0βσ þH:c:

� �
; ð1Þ

as schematically shown in Fig. 1. Here, cðyÞrασ is the annihilation
(creation) operator of an electron at site r, orbital α, and with spin
σ= ↑ or ↓. As discussed by Meier et al.25, CoSn-type kagome
systems have several flat bands with {yz, xz}, {xy, x2− y2}, or
3z3− r2 character. We focus on a {yz, xz} subset for simplicity
and use α= a for the yz orbital and b for the xz orbital. With this
basis, nearest-neighbor hopping intensities tαβr r0 can be para-
meterized using Slater integrals56. Between site 1 and site 2, t̂12 is
diagonal in orbital indices as taa1 2 ¼ tδ and tbb1 2 ¼ tπ , corre-
sponding to (ddδ) and (ddπ), respectively, by Slater and Koster56.
Other components are obtained by rotating the basis a and b as
shown in the Methods section. From now on, tπ is used as the
unit of energy.

Because yz and xz are written using the eigenfunctions of
angular momentum lz= ±1 for l= 2 as yz

�� � ¼ iffiffi
2

p ð 1j i þ �1j iÞ
and xzj i ¼ � 1ffiffi

2
p ð 1j i � �1j iÞ, respectively, the SOC λ l

!� s! in

the {yz, xz} subset is written as

Hsoc ¼
λ

2
∑
r σ

iσzσσc
y
raσcrbσ þH:c:

� �
; ð2Þ

where σ̂z is the z component of the Pauli matrices.
As shown in Supplementary Note 1, an effective model for the

{xy, x2− y2} doublet has the same form as the above Ht+Hsoc.
By symmetry, there is no hopping matrix between the {yz, xz}

1 2
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1 2

3

(a) (b) (c)

xz

yz

tπ

tδ

a1

a2

Fig. 1 Schematics of our theoretical model. a Kagome lattice with three sublattices, labeled 1, 2, and 3. The two arrows are lattice translation vectors a1,2.
b Local orbitals a= yz and b= xz. Colored ellipsoids indicate regions of electron wave functions, where the sign is positive. c Nearest-neighbor hopping
integrals. yz(xz) orbitals between site 1 and site 2 are hybridized via diagonal hopping tδ(π), i.e., δ(π) bonding. Other hopping integrals between site 2 and
site 3 and between site 1 and site 3 are obtained via the Slater rule56 as shown in the Methods section.
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doublet and the other orbitals xy, x2− y2, and 3z2− r2, but the
{xy, x2− y2} doublet and the 3z2− r2 singlet could be hybridized.
As discussed briefly later, the degeneracy in the {yz, xz} doublet
and in the {xy, x2− y2} doublet could be lifted by a crystal field.
Such band splitting is also induced by the difference between tδ
and tπ. Furthermore, all d orbitals could in principle be mixed by
the SOC. Including these complexities is possible but depends on
the material and they usually induce smaller perturbations,
therefore, here they are left for future analyses.

Non-interacting band topology. By diagonalizing the single-
particle Hamiltonian Ht+Hsoc, one obtains dispersion relations
as shown in Fig. 2. In the simplest case, where the hopping matrix
tαβr r0 does not distinguish tδ and tπ and the SOC is absent, the
dispersion relation is identical to the one for the single-band
tight-binding model, consisting of flat bands and graphene-like

bands as shown by gray lines in Fig. 2a. Note that each band is
fourfold degenerate because of two orbitals and two spins per site.
Including SOC does not change the dispersion curve but simply

shifts l
!� s!¼ ± 1=2 bands (see Supplementary Note 1).

Including orbital dependence as tδ ≠ tπ without SOC instead
splits the fourfold degeneracy except for two points at the Γ point
and two points at the K point. Quite intriguingly, Dirac
dispersions emerge from the topmost flat bands as shown as
blue lines in Fig. 2a (see Supplementary Note 1 for more
discussion). Turning on the SOC further splits such fourfold
degeneracy, leading to nontrivial band topology. In this particular
example, the spin component along the z axis is conserved giving
unique characteristics to this case. As shown in Fig. 2b, the spin
up component of each band is characterized by a nonzero Chern
number Cn. Because of the time-reversal symmetry, spin down
bands have opposite Chern numbers. The topological property is
also confirmed by gapless modes in the dispersion relation with
the ribbon geometry, as shown in Fig. 2c. Here, there appear one
(two) pair of gapless modes between the highest and the second
highest (between the second lowest and the third lowest) bands,
shown as red (blue) curves, corresponding to the sum of Chern
numbers below the gap, −1(−2). The other edge states are
invisible because of the overlap with the bulk continuum.

A multi-orbital kagome model thus naturally shows quasi flat
bands with nontrivial topology. However, close inspection
revealed that, with tδ= 0.5 and λ= 0.2, the minimum of the
highest band at the K point is slightly lower than the maximum of
the second highest band at the Γ point. Thus, instead of a TI, a
topological semimetal is realized when the Fermi level is located
between the highest band and the second highest band. In fact,
there are ways to make the gap positive. Here, we consider

second-neighbor hopping matrices t̂
ð2Þ
r r0 . As explained in Supple-

mentary Note 1, these are also parametrized by π-bonding (ddπ)
and δ-bonding (ddδ), tð2Þπ and tð2Þδ , respectively. For simplicity, we

fix the ratio between tπ and tð2Þπ and between tδ and tð2Þδ as

tð2Þπ =tπ ¼ tð2Þδ =tδ ¼ r2, and analyze the sign and magnitude of the
band gap Δgap between the highest band and the second highest
band, as well as the flatness of the highest band defined by
Δε � ε1;max � ε1;min.

Figure 3a plots Δε as a function of tδ and r2 with λ= 0.2. As
mentioned previously, the perfectly flat band with Δε= 0 is
realized at tδ= 1 and r2= 0, but band gap Δgap is zero. The
flatness is immediately modified by reducing tδ from 1. As
indicated by an open square in the plot, tδ= 0.5 and r2= 0 gives
Δε ~ 0.88 and negative band gap Δgap ~−0.027. Nonzero r2
controls the relative energy between the zone center and the zone
boundary. In particular, negative r2 pushes up the energy at the K
point, hereby the flatness is recovered. Naturally, the flatness and
the positive gap are correlated as indicated by red loops in the
second and forth quadrants because the separation between the
highest band and the second highest band is fixed by the SOC
strength. As indicated by a filled circle, tδ= 0.5 and r2=−0.2
gives Δε ~ 0.22 and positive band gap Δgap ~ 0.17. Corresponding
dispersion relation is shown in Fig. 3b. The Chern numbers
remain unchanged by this r2.

Many-body effects. Having established the topological properties
at the single-particle level, we turn our attention to many-body
effects focusing on the highest-energy flat band. A unique
property of the current model is that the topmost quasi flat band
has Chern number jCj ¼ 1. Thus, a large spin polarization can be
induced by many-body interactions57 or by a small magnetic
field. Further intriguing possibilities are FCI states when a
topological flat band has a fractional filling and the insulating gap

Fig. 2 Dispersion relations of the non-interacting model. Bulk dispersion
relations without the spin-orbit coupling (SOC) (a) and with the SOC
λ= 0.2 (b). In both cases, energy E is scaled by the π-bond hopping integral
tπ. Gray lines in a indicate the dispersion with the δ-bond hopping integral
tδ= 1, which realizes the ideal dispersion in a kagome lattice. Blue lines in
(a) and red lines in (b) are dispersions with tδ= 0.5. The inset shows the
first Brillouin zone with high-symmetry lines used in (a), (b). The Chern
number Cn for the spin up component of each band is also shown in (b).
c Dispersion relations with tδ= 0.5 and λ= 0.2 in the ribbon geometry,
which is periodic along the a1 direction and contains 20 unit cells along the
perpendicular direction. Gapless edge modes are indicated by red and
blue lines.
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is induced by correlation effects44,46–52. We examine such a
possibility in our kagome model. Assuming the spin polarization
in the highest band, we introduce local and nearest-neighbor
Coulomb repulsive interactions as HU ¼ U∑rnra"nrb"þ
V∑ rr0h i∑αβnrα"nr0β", where nrασ ¼ cyrασcrασ . Here U is the effective
Coulomb interaction given by U ¼ U 0 � J with the interorbital
Coulomb repulsion U 0 and the interorbital exchange interaction J.
These interactions are then projected onto the highest band,
leading to the effective Hamiltonian Heff=Ht+Hsoc+HU.

Note that the Sz conservation is not essential to realize FCI. For
our case and most of others, including complexities which break
Sz conservation does not destroy FCI as long as the flat band has
the nontrivial topology and is well separated from other bands,
justifying projecting interaction terms onto the flat band and
allowing for an accurate Lanczos calculation. While the
computational cost would be expensive, direct calculations of
multiband models with Sz-non-conserving terms would show FCI
if the appropriate condition is fulfilled, but this possibility has not
been fully explored yet.

The effective Hamiltonian Heff is diagonalized in momentum
space. For this purpose, we discretize the momentum space into
N1 ×N2 patches and express the Hamiltonian in the occupation
basis, i.e., the Hilbert space is built up by φl

�� � ¼ Q
k2lψ

y
1k 0j i,

where ψ1k is the single-particle wave function for the highest flat
band at momentum k, and the combination of k is specified by l.
Due to the translational symmetry and the momentum

conservation of many-body interaction terms, Heff is subdiago-
nalized according to the total momentum ktot=∑k∈l k modulo
b1 and b2, with b1,2 being two reciprocal lattice vectors. In this
study, we take N1= 4 and N2= 6 and consider ν= 1/3 filling,
that is, the number electrons in the highest flat band is Ne= 8.
Momentum sector will be specified using integer index (k1, k2)
corresponding to the total momentum ktot= b1k1/N1+ b2k2/N2.

Figure 4a, b show the low-energy spectra of the interacting
model with tδ= 0.5 and r2= 0 and tδ= 0.5 and r2=−0.2,
respectively, with U= 2 and V= 1 as a function of total
momentum. In (a), the energy spectrum has a unique ground
state at total momentum (k1, k2)= (0, 0) (note that this is to show
the competition between the wide band width and the correlation
effects on the highest band). When r2 is introduced as −0.2, the
highest band becomes flatter, leading to a drastic change in the
energy spectrum. There appear three energy minima at (k1, k2)=
(0, 0), (0, 2), and (0, 4), forming a threefold degenerate ground
state manifold (GSM), which is separated from the other states by
an energy gap ~0.03. As shown in Fig. 4c, the three sectors evolve
with each other by inserting magnetic fluxes without having
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Fig. 3 Control of the band flatness. a Color map of the flatness Δε of the
highest band as a function of tδ and the ratio between the nearest-neighbor
and the second-neighbor hopping r2 with λ= 0.2. Open square (filled
circle) locates tδ= 0.5 with r2= 0 (−0.2). Red closed loops show the areas
where the band gap is positive Δgap > 0. b Bulk band structure with tδ= 0.5,
r2=−0.2, and λ= 0.2. Band-dependent Chern number is also shown.

Fig. 4 Emergence of a ν= 1/3 fractional Chern insulating state. Low-
energy spectra of an interacting model with tδ= 0.5 with r2= 0 (a) and
r2=−0.2 b Other parameter values are λ= 0.2, U= 2 (local Coulomb
interaction), and V= 1 (nearest-neighbor Coulomb interaction). Ground
state energy is indicated by black squares, and excited state energies are
indicated by different symbols. c Spectral flow of the ground state manifold
upon flux insertion with tδ= 0.5 with r2=−0.2. Red solid lines, green
dashed lines, and blue dash-dotted lines are for sector (k1, k2)= (0, 0),
(0, 2), and (0, 4), respectively.
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overlap with higher energy states (energy separation is slightly
reduced to ~ 0.02). These results strongly suggest a ν= 1/3 FCI
state.

To confirm that this threefold degenerate ground state really
represents a FCI state instead of trivial states such as charge
density waves, we compute Chern numbers Cðk1;k2Þ by introducing
twisted boundary conditions5,58. Here, we discretize the boundary
phase unit cell into 20 × 20 meshes, and numerically evaluate the
Berry curvature Fðk1;k2Þðθ1; θ2Þ as detailed in the Methods section
as well as in Supplementary Note 2. Figure 5 shows Fðk1;k2Þðθ1; θ2Þ
in a discretized grid (n1, n2) for the GSM with tδ= 0.5, r2=−0.2,
λ= 0.2 with U= 2 and V= 1. Along the n1 direction, these plots
are periodic. Along the n2 direction, plot (a) is continuously
connected to plot (b), plot (b) is connected to plot (c), and plot (c)
is connected back to plot (a). This also confirms the threefold
GSM, where inserting one flux quantum along the b2 direction
shifts the sector (k1, k2)= (0, 0) to (0, 2), (0, 2) to (0, 4), and (0, 4)
to (0, 0). By adding up the discretized values of Fðk1;k2Þðθ1; θ2Þ, we
obtain Cð0;0Þ ¼ 0:331489, Cð0;2Þ ¼ 0:330318, Cð0;4Þ ¼ 0:338193,
and the sum of the three Chern numbers is exactly 1 within
the numerical accuracy. The slight deviation from the ideal value
C ¼ 1=3 is ascribed to finite-size effects. This proves the existence
of a ν= 1/3 FCI phase with a quantized fractional Hall response
σH ¼ 1

3 e
2=h, where e is the electron charge and h is the Planck

constant. In our numerical analyses, we did not find a ground
state with the threefold degeneracy and Chern number zero, thus
excluding the charge density wave states. This is probably because
the quantum effects make such states unstable, as discussed in
ref. 42.

Discussion
In this work, we have considered an itinerant electron model on a
kagome lattice with twofold degenerate orbitals per site. However,
each site has C2 rotational symmetry, rather than C3 or C4. Thus,
the degeneracy between the two orbitals (yz and xz) can be lifted.
In our tight-binding model, a difference in the hopping amplitude
between tπ and tδ in fact lifts such degeneracy, leading to the
splitting of the band structure. Thus, adding local crystal field
splitting, which respects the underlying lattice symmetry, would
not fully destroy the topological property found in this work,
while the position of topological or flat bands would be modified
depending on model parameters. As a number of kagome
materials have already displayed a nontrivial band
topology21–24,26–28,30–32,36–39, reducing the thickness of such
materials down to a few unit cells, or growing thin films of such

materials and tuning the Fermi level to a topological flat band by
chemical substitution or gating, might be a promising route to
observe the phenomena predicted here. The sign and the mag-
nitude of the parameter r2 could depend on details of the mate-
rial, such as the species of ligand ions, and might be further
controlled by compressive or tensile strain. First principles cal-
culations would help to construct realistic material-dependent
models12,15,17. It is anticipated that the separation between {yz,
xz}, {xy, x2− y2}, or 3z3− r2 subsets will be enhanced by reducing
the film thickness compared with that in the bulk so that one can
focus on one of the subsets only. In addition to a kagome lattice,
topological flat bands appear in dice and Lieb lattices59–61. Study
of FCI states in such lattice geometries and material search is
another important direction.

To summarize, we have demonstrated the close interplay
between the spatial frustration and the orbital degree of freedom
in a kagome lattice. With the relativistic SOC, such an interplay
not only affects the band dispersion, but also induces nontrivial
topology. Specifically, we showed that the original flat bands in a
kagome lattice become dispersive and topologically nontrivial.
When such topological bands are fractionally occupied by elec-
trons, many-body interactions drive further intriguing phenom-
ena, i.e., fractional Chern insulating states. Our work may bridge
the gap between idealized theoretical studies and real materials.

Methods
Non-interacting {yz, xz} model. Here we deduce the hopping matrices of the
{yz, xz} model in the Slater–Koster approximation.

For nearest-neighbor bonds, in addition to the diagonal matrix t̂12 presented in
the main text, we have

t̂13 ¼
1
4

3tπ þ tδ
ffiffiffi
3

p ðtπ � tδÞffiffiffi
3

p ðtπ � tδÞ tπ þ 3tδ

" #
;

t̂23 ¼
1
4

3tπ þ tδ � ffiffiffi
3

p ðtπ � tδÞ
� ffiffiffi

3
p ðtπ � tδÞ tπ þ 3tδ

" #
:

ð3Þ

Similarly, second neighbor hopping matrices can be written as

t̂
ð2Þ
1 2 ¼

tð2Þπ 0

0 tð2Þδ

" #
;

t̂
ð2Þ
1 3 ¼

1
4

tð2Þπ þ 3tð2Þδ � ffiffiffi
3

p ðtð2Þπ � tð2Þδ Þ
� ffiffiffi

3
p ðtð2Þπ � tð2Þδ Þ 3tð2Þπ þ tð2Þδ

" #
;

t̂
ð2Þ
2 3 ¼

1
4

tð2Þπ þ 3tð2Þδ

ffiffiffi
3

p ðtð2Þπ � tð2Þδ Þffiffiffi
3

p ðtð2Þπ � tð2Þδ Þ 3tð2Þπ þ tð2Þδ

" #
;

ð4Þ

where subscript (2) is introduced to highlight the difference from the nearest-
neighbor bonds. These are schematically shown in Fig. 6. tð2Þπ and tð2Þδ correspond to
(ddπ) and (ddδ), respectively, by Slater and Koster56.
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Fig. 5 Many-body Berry curvature as a function of discretized boundary phases. a Sector (k1, k2)= (0, 0), b sector (0, 2), and c sector (0, 4). Parameter
values are tδ= 0.5, r2=−0.2, λ= 0.2 with U= 2 and V= 1.
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Non-interacting Berry curvature. The band-dependent Berry curvature of non-
interacting electrons is given as a function of momentum k as

Ωnk ¼ i ∑
mð≠nÞ

nh jv̂xk mj i mh jv̂yk nj i � ðv̂xk $ v̂ykÞ
ðεmk � εnkÞ2

; ð5Þ

where, using the Hamiltonian matrix in momentum space Ĥk , v̂ηk is given by

v̂ηk ¼ ∂Ĥk=∂kη . With this Berry curvature, the band dependent Chern number Cn
is given by

Cn ¼ 1
2π

Z
BZ
d2kΩnk ; ð6Þ

where the momentum integral is taken in the first Brillouin zone.

Many-body Chern number. The many-body Chern number is computed by
introducing a twist boundary condition to a single-particle wave function as
ψðrþ NjajÞ ¼ eiθjψðrÞ, where Nj=1,2 are the numbers of unit cells along lattice
translation vectors aj=1,2, with phase factors θj=1,2. This corresponds to inserting
magnetic fluxes. When one flux quantum is inserted, θj changes from 0 to 2π and
discretized momentum k moves from its original position to its neighbor along the
bj direction with the momentum shift given by Δk= bj/Nj.

Many-body Chern number of the ground state (k1, k2) is computed via
Cðk1 ;k2Þ ¼ 1

2π

R 2π
0 dθ1

R 2π
0 dθ2Fðk1 ;k2Þðθ1; θ2Þ58 where F(θ1, θ2) is the Berry curvature

given by

Fðk1 ;k2 Þðθ1; θ2Þ ¼ Im
∂Φðk1 ;k2 Þ
∂θ2

∂Φðk1 ;k2Þ
∂θ1

����
	 


� ðθ1 $ θ2Þ
� �

: ð7Þ

Here, jΦðk1 ;k2Þi is the many-body wave function constructed using single-particle
wave functions with a twist boundary condition ψ(r) after the Fourier
transformation to momentum space. The momentum index (k1, k2) will be omitted
in the following discussion for simplicity.

Partial derivative of a wave function with respect to θj is approximated by a
finite difference as ∂Φ=∂θ

�� � � 1
jΔθj ½ Φðθ þ ΔθÞ

�� �� ΦðθÞ
�� ��. Here, the vector

notation is used for θ= (θ1, θ2), and Δθ= (Δθ1, 0) or (0, Δθ2). Then, it is required
to compute a product of two wave functions as ΦðθÞjΦðθ0Þ
 �

with θ ≠ θ0 . Because
we are using a multiorbital model projected onto the flat band, special care is
needed, as detailed in Supplementary Note 2.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
Codes used in this paper are available from the corresponding author upon reasonable
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