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Magnetic ground states of honeycomb lattice
Wigner crystals
Nitin Kaushal 1✉, Nicolás Morales-Durán 2, Allan H. MacDonald 2 & Elbio Dagotto 1,3

Lattice Wigner crystal states stabilized by long-range Coulomb interactions have recently

been realized in two-dimensional moiré materials. We employ large-scale unrestricted

Hartree-Fock techniques to unveil the magnetic phase diagrams of honeycomb lattice Wigner

crystals. For the three lattice filling factors with the largest charge gaps, n ¼ 2=3; 1=2; 1=3, the

magnetic phase diagrams contain multiple phases, including ones with non-collinear and non-

coplanar spin arrangements. We discuss magnetization evolution with external magnetic

field, which has potential as an experimental signature of exotic spin states. Our theoretical

results could potentially be validated in moiré materials formed from group VI transition

metal dichalcogenide twisted homobilayers.
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Overlaying two-dimensional crystal layers with small lattice
constant mismatches or interlayer twist angles creates
moiré patterns. Recent experimental progress1–6 has

established transition metal dichalcogenide (TMD) bilayers with
moiré patterns periods on the 10 nm scale as an attractive
platform7,8 to synthesize artificial one-band Hubbard model
strongly-correlated electron systems. The minibands of these
moiré materials are flat for a wide-range of twist angles, unlike
twisted bilayer graphene which requires tuning to magic-
angles9–12. Key control parameters of these artificial Hubbard
models like the bandwidth, the carrier density, and the screening
of long-range Coulomb interactions can be adjusted by varying
twist-angle, gate voltage, and gate electrode placement13,14.

Because they are based on triangular lattice host atomic
crystals15, TMD moiré materials realize either triangular lattice
Hubbard models or, when the emergent low-energy moiré
Hamiltonian has C6 symmetry, honeycomb lattices. For example,
the topmost moiré band of aligned WSe2=WS2 heterobilayers and
twisted WSe2 homobilayers16–18 mimics the triangular lattice
Hubbard model, while the topmost moiré bands of MoSe2, MoS2,
and WS2 homobilayers have been predicted to simulate the
honeycomb lattice Hubbard model19–21. It has been found that in
moiré materials, interactions lead not only to Mott insulating
states at half-filling22 (hole band filling n= 1), but also at frac-
tional fillings23–25. The ground states at fractional filling factors
are Wigner crystal states in which electrons occupy a subset of the
available lattice sites and translational symmetry is broken, as
shown for example by recent high-resolution scanning tunneling
experiments for hole fillings n= 2/3, 1/2, and 1/3 in WSe2/WS226.
Wigner crystal states rely on inter-site Coulomb interactions, and
are likely obscured by disorder in heavily doped atomic crystals.
Their prominence in experiment is a demonstration of the
potential of moiré materials to reveal exotic physics. Although
Wigner crystal states have charge gaps, their low-energy physics is
non-trivial because of the spin degrees of freedom that remain on
all occupied lattice sites. The spins are expected to order at low
temperatures in most cases, but could potentially have spin-liquid
ground states in some instances. The interactions between spins
in Wigner crystals states are different from those in Mott insu-
lator states because the possibilities for virtual electron hopping
across the charge gap are enriched, and control the magnetic
ground states that are the main subject of this paper.

To date the triangular lattice Hubbard model has been the
main focus for both experimental and theoretical studies of TMD
moiré materials27,28. However, MoSe2, MoS2, and WS2 homo-
bilayers with the 2H structure have Γ point29 interlayer anti-
bonding states at the valence band maxima (VBM), unlikeMoTe2
and WSe2 where the VBM is located at the K point. This has
important implications for the moiré bands of these materials.
Recent ab-initio calculations showed that a small twist angle (θ)
in Γ-valley TMD homobilayers leads to the creation of moiré
bands mimicking one and two orbitals honeycomb lattices, as
well as kagome lattices19–21. The continuum model Hamiltonian
was derived in19 by keeping only antibonding layer states and
neglecting spin-orbit coupling because it vanishes at the Γ point.
Consequently, although the vast majority of theoretical work in
moiré systems have addressed triangular lattices, here we focus on
honeycomb lattices and the influence of electronic interactions,
anticipating that in the near future honeycomb systems will be
realized experimentally.

For concreteness, we specifically discuss the example of the
MoSe2 homobilayer with twist angle θ= 1.5°. The continuum
moiré Hamiltonian is H ¼ �_2k2=2m� þ ΔðrÞ. In this equation,
Δ(r) is the moiré potential defined as ΔðrÞ ¼ ∑s∑

6
j¼1Vse

iðgsj �rþϕsÞ,
where gsj are vectors of the moiré reciprocal lattice connecting to

the s-th nearest-neighbor site. The moiré Brillouin zone and the
g1j vectors are shown in the inset of Fig. 1(b). In Fig. 1(a), the
band structure for MoSe2 is displayed. The topmost red-colored
bands, highlighted in Fig. 1(b), realize a one-orbital honeycomb
lattice tight-binding model. The dashed black line shows the
nearest-neighbor tight-binding model result with hopping para-
meter t= 1/6 meV. This comparison demonstrates that for small
values of the twist angle θ, the highest energy bands can be
faithfully described by the nearest-neighbor honeycomb lattice.
The emergence of a honeycomb lattice is understood intuitively
by noticing the structure of the moiré potential, plotted in
Fig. 1(c), in which the moiré potential maxima define a honey-
comb lattice structure.

Once established that the Γ-valley bilayer-TMDs can effectively
be described as a honeycomb lattice, it is anticipated that in their
Mott insulator state (hole filling n= 1), simple collinear bipartite
antiferromagnetic (AFM) order is supported. However, at the
fractional fillings, the open questions arise: (i) Do we, as in the
triangular lattice heterobilayer case, obtain 2D generalized
Wigner crystals at special fillings in these moiré materials once
the model is made realistic by including longer range electronic
interactions? (ii) What kind of magnetic states we may expect in
these Wigner crystals? The present work investigates the above
questions by obtaining the many-body ground state for different
particle fillings of the honeycomb lattice, considering the strong
on-site Coulomb interaction U0>>t limit, and incorporating
long-range Coulomb interactions as well. The longer-range
interactions are essential to understand the phases of the frac-
tionally filled bilayer-TMDs. However, investigating fractionally-
filled Hubbard models with non-local interactions is a formidable
task, even for exact Lanczos studies on small clusters or highly
accurate density matrix renormalization group studies on rib-
bons. For this reason, static mean-field theory investigations have
been extensively employed by the community to study moiré
superlattices30–34. In this publication, we will employ an unrest-
ricted Hartree-Fock approximation to exhaustively explore the
phase diagrams of long-range Coulomb interacting Hubbard
models on honeycomb lattices, with focus on fillings n= 2/3, 1/2,
and 1/3. In insulating states, the unrestricted Hartree–Fock
approximation allows energy to be minimized by varying the spin
direction on each lattice site and is therefore equivalent to
employing a classical approximation within a spin-only model for
the low-energy physics. The static mean field theory approx-
imation is accurate when charge fluctuations are suppressed, as
they are in Wigner Crystal states, and ground state spin fluc-
tuations are also weak. Importantly the Hartree–Fock completely
eliminates self-interaction effects in the limit of electrons localized
on lattice sites. However, the Hartree–Fock approximation cannot
describe spin-liquid states.

Using the Hartree–Fock approximation we are able to address
how the ground state evolves as the parameters of the model are
varied. After establishing the phase diagrams and the presence of
rich spin physics in the fractionally filled honeycomb moiré
materials, in the last portion of our work we also discuss the
magnetization evolution under external magnetic fields for the
magnetic states in the strong long-range Coulomb interaction
limit. These magnetization vs. external magnetic field curves are
experimentally accessible, and can be used as signatures of the
exotic magnetic Wigner crystals unveiled here.

Results
Lattice Hamiltonian. In this study, we extend the one-band
Hubbard model on a honeycomb lattice by including the long-
range Coulomb repulsion that is relevant in moiré systems. The
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Hamiltonian is

H ¼ ∑
i;i0;a;b;σ

tiai0bc
y
iaσci0bσ þ U0 ∑

i;a
nia"nia#

þ U1 ∑
i
ni0ni1 þ 1=2∑

i≠i0
Uii0

abniani0b;
ð1Þ

where cyiaσ (ciaσ) is the standard fermionic creation (anhilation)
operator. In the Hamiltonian above, fi; i0g labels unit cell, a, b=0/1
labels sublattice, and σ 2 f";#g denotes spin. niaσ ¼ cyiaσciaσ is the
fermionic density operator. The first term of Eq. (1) captures the
band Hamiltonian whose hopping parameters we choose as the
unit of energy by setting tiai0b ¼ t ¼ �1 for nearest neighbors and to
0 otherwise. We kept only the nearest-neighbor hopping because
for Γ-valley moiré homobilayers the longer range hoppings are
negligible compared with |t|, see Supplementary Note 5. Moreover,
we showed specifically forMoSe2 homobilayers that topmost bands
can be well represented by just a nearest-neighbor honeycomb
lattice (See Fig. 1(b)). The second (U0) and third (U1) terms
represent the on-site and the nearest-neighbor Coulomb repulsion,
respectively. The fourth term is the long-range tail of the Coulomb
interaction, where the parameters Uii0

ab are fixed using the screened

Coulomb repulsion UðrÞ ¼ U1
1
jrj � 1

ffiffiffiffiffiffiffiffiffiffiffi

jrj2þd2
p

� �

= 1
jr1j �

1
ffiffiffiffiffiffiffiffiffiffiffiffi

jr1j2þd2
p

� �

,

where |r1| is the nearest-neighbor distance, |r| is the distance
between sites fi; ag and fi0; bg, and d is the screening length. We
choose U1 and U0 as independent model parameters because U0 is
sensitive mainly to twist angle and the strength of the moiré
modulation potential, which control the size of the band Wannier
function7, whereas U1 is sensitive mainly to the screening back-
ground of the moiré material. We expect the ratio of the strength of
the long-range Coulomb tail to U1 to be nearly universal, as we
have assumed. We solved the above model using the unrestricted

Hartree-Fock approximation with details provided in the Methods
section.

Results at n = 1/2, 2/3, 1/3. In the Hamiltonian used here, once
the screening length d is fixed the only free parameters are U0, U1,
and the band filling n. We explored the complete U1=U0 vs U0=t
phase diagrams, fixing system size to 12ðLxÞ ´ 12ðLyÞ, for the
average electronic densities n ¼ 1=2; 2=3; 1=3, where
n ¼ Ne=ð2LxLyÞ, Ne is the total number of electrons and LxðLyÞ is
number of unit cells along the x(y) direction. The model we study
has particle-hole symmetry with respect to n= 1 since we employ
only nearest-neighbor hopping, hence the magnetic states dis-
cussed in our paper for any fractional filling n will also be present
for the case of the filling 2� n.

When quantum fluctuations are suppressed and we are deep in
the Wigner crystal (WC) regime we obtain the configurations
shown in Fig. 2 for the fillings addressed. The WC for n= 1/2
resembles a half-filled standard triangular lattice35. The other two
states for n= 1/3 and n= 2/3 break rotational symmetry of the
honeycomb lattice. In the following, we will calculate the U0=t vs.
U1=U0 phase diagrams of Eq. (1). We will mainly discuss the
phases appearing in the strong coupling regime, here defined as
U0=t ≥ 10, because this is the regime most often explored
experimentally in moiré superlattices typically and because this
is the region where our method performs better. We discover a
rich set of competing phases for each of the fillings, that vary as
the U0=t and U1=U0 ratios are varied. The details of the phases in
the weak and intermediate coupling regions are provided in
Supplementary Note 1, for completeness. We also investigated the
stability of the various phases found here vs. changes in screening
length, by solving the above model for two screening length
values d ¼ 2am and 10am, where am is the moiré lattice spacing.

Fig. 1 Continuum model results. a This shows a nearly flat MoSe2 band structure calculated using the continuum model in ref. 19 at twist angle θ ¼ 1:5�. In
b, the topmost bands are magnified. The dashed black line is the band structure of a nearest-neighbor tight binding model defined on a honeycomb lattice.
c This shows the moiré potential in real space. The color bar depicts the value of the moiré potential. The model parameters ðV1;V2;V3; ϕs;m

�; a0Þ =
ð36:8; 8:4; 10:2; π; 1:17me; 3:295Þ are fixed to values corresponding to MoSe2. Here me is the bare electron mass and V1;2;3 are in meV units. am is the moiré
lattice spacing.
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The main message of our findings is that honeycomb lattice
Wigner crystals have complex magnetic states, and that
transitions between them can be tuned by varying U0=t, which
is very sensitive to twist angle and three-dimensional dielectric
environment, or by varying U1=U0, which is sensitive to both
twist angle and metallic screening backgrounds.

(a) n= 1/2 results. The main results for filling n= 1/2 are shown
in Fig. 3. The calculations were performed for all the points
shown as small circles in the phase diagrams in Fig. 3(a) and (b)
for screening lengths d ¼ 2am and d ¼ 10am, respectively. We
identified multiple phases in the strong coupling limit (U0>>t)
which are stable for both screening lengths, see Fig. 3(a, b).

Firstly we will discuss the region of the phase diagram where
we found robust triangular WC states (shown in Fig. 2(a)) and
Hartee-Fock is most trustworthy as the charge fluctuations are
suppressed. The triangular WC state appears at large U0=t and
large U1=U0, since the charge gap requires strong on-site and
near-neighbor interactions. We find that the 120°-AFM state, (see
Fig. 3(d)), is the most stable magnetic state. In this state the
charge density order is identified by the pseudospin structure
factor τzðqÞ ¼ 1=N∑iτzðiÞeiq�ri at momentum q= (0,0), where

the quantity τi;z ¼ hni;bi � hni;ai measures the electronic density
difference between the two honeycomb sublattices, indicating the
breaking of inversion symmetry between the two sublattices.
τzð0; 0Þ smoothly decreases upon decreasing U1=U0. The total
magnetization jmj ¼ 2=Nej∑ihSiij ¼ 0 throughout this phase.

The 120°-AFM state is common on triangular lattices.
Surprisingly we also found unexpected exotic non-coplanar
AFM states: the 12-vertices polyhedron (P12v) and the Trigonal-
Prism (TP). Both states have non-zero τzð0; 0Þ, confirming
triangular lattice Wigner crystal charge order. Previous to this
work, only tetrahedral non-coplanar magnetic states were
reported in honeycomb36 and triangular lattice Hubbard
models37,38. The P12v phase has 12 distinct spins per unit cell
with the members of two sets of six spins, namely {1,2,3,4,5,6} and
{7,8,9,10,11,12}, lying along two perpendicular hexagons (colored
as red and green in Fig. 3(g)). Figure 3(g) also shows the positions
of the non-coplanar spins in real space. The Trigonal Prism (TP)
phase is shown in Fig. 3(f) where six spins are aligned towards the
corner of the trigonal-prism and the real-space lattice is shown on
the right side. Increasing U1=U0, inside the region named TP in
the phase diagram, decreases the height (h i.e., distance between
spins “1 and 5” of the prism) and on further increasing U1=U0, h
suddenly drops to zero, converting the spin-configuration to that
of the 120°-AFM state.

Furthermore, we checked the scalar chirality Si � ðSj ´ SkÞ of
both non-coplanar states, where Si;j;k are the spins located on the
emergent triangular lattice. We find that the chirality has striped
patterns, with zero net chirality unlike the tetrahedron spin state
with homogenous and nonzero net chirality, for details see
Supplementary Note 2. Our calculations also confirmed zero
Hall-conductance for both non-coplanar states, showing that they
are topologically trivial.

Further decreasing U1=U0, we found a sudden decrease in
τzð0; 0Þ and an abrupt jump in |m| from 0 to 1, indicating a first-
order AFM to FM (ferromagnetic) phase transition near
U1=U0 � 0:35 (for d ¼ 10am). This phase also breaks the sub-
lattice inversion symmetry, hence making it a saturated FM
insulator. A representative state for this FM+WC phase is shown
in Fig. 3(c). In the low U1=U0 region, we found a fully polarized
ferromagnetic metal with a net magnetization |m|= 1.0 i.e., a
Nagaoka ferromagnetic state. This fully polarized metallic state
has been reported in earlier mean-field studies of the Hubbard
models on various two-dimensional lattices, including the
honeycomb lattice39,40. In Fig. 3(e) we show τzð0; 0Þ and the
charge gap Δc evolution with changing U1=U0, fixing U0=t ¼ 10
and d ¼ 10am. The τzð0; 0Þ and Δc continuously decrease to 0,
suggesting a second-order phase transition in between FM
insulator and FM metallic phase. Nevertheless, exact calculations
are required to confirm the presence of this FM metallic state as
the Hartree-Fock approximation is expected to overestimate the
presence of ferromagnetic metallic states, especially for low band
fillings41.

In the triangular Wigner crystal limit, as the charge fluctua-
tions are heavily suppressed, it is natural to ponder if a low-
energy spin model can explain the magnetic states we found. At
large U1=U0, fourth-order processes, using the hopping as a small
parameter, generate an antiferromagnetic exchange JAFM /
t4=ð2U1Þ2U0 between the nearly half-filled sites of the emergent
triangular lattice (which are second-nearest neighbors in the
original honeycomb lattice) leading to a spin-1/2 antiferromag-
netic Heisenberg model on the triangular lattice. In agreement
with this reasoning, we found the 120�-AFM state in the large
U1=U0 region of the phase diagrams, as in the ground state
solution of the triangular lattice Heisenberg model in both
classical and quantum limits42,43.

Fig. 2 Wigner crystal (WC) states. a, b, and c These show the Wigner
crystals in the limit of U0;U1>>t for the fillings n ¼ 1=2, n ¼ 2=3, and
n ¼ 1=3, respectively. The parameters U0, U1; and t corresponds to the
onsite Coulomb interaction, nearest-neighbor Coulomb interaction, and
nearest-neighbor hopping, respectively.
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Theoretical studies of classical spin models on triangular
lattices, when in presence of a 4-site ring exchange term, have
shown the appearance of 6-sublattice and 12-sublattice non-
coplanar phases resembling our Trigonal Prism and P12v phases,
respectively44. In our study in the Wigner crystal region, the ring-
exchange term on 4-site plaquettes as in triangular lattices can be
generated by 8th-order hopping processes leading to a ring
exchange JR / t8=ð2U1Þ2ðU0Þ3ð3U1Þ2. Note that in this scenario
JR=JAFM / t4=ðU0U1Þ2 and decreasing U1 increases JR=JAFM ,
showing the importance of the ring-exchange mechanism as U1 is
decreased. Naturally this suggests that the ring-exchange term
will be dominant inside the Wigner crystal phase as both U1 and
U0 are decreased (if the Wigner crystal remains stable),
explaining the location of the non-coplanar phases at the
boundary of the Wigner crystal phase and also explaining why
the non-coplanar phases are destabilized as U1 or U0 is increased.

Quantum fluctuations can be studied using density matrix
renormalization group technique45,46. Although these are limited
to finite-width ribbons, they will be important to investigate the
stability of the non-coplanar states and the possibility of realizing
exotic quantum spin liquids. For example, it has been shown that
the Trigonal Prism state has uniform vector chirality (although
the net scalar chirality is zero). Including quantum fluctuations
may lead to a vector chiral spin liquid state47.

(b) n= 2/3 results. The U1=U0 vs U0=t phase diagrams for filling
n ¼ 2=3 at d ¼ 2am and d ¼ 10am are shown in Fig. 4(a, b).
Again, we unveiled a plethora of phases. In a large part of the
phase diagram (the blue colored region) we found states with two
distinct charge stripes with a width of 2-sites (resembling the
double-striped Wigner crystal shown in Fig. 2), where one stripe
follows an AFM zigzag pattern and other stripe is made up of
nearest neighbor AFM dimers present at distance of am. These
double-striped phases break the C3 rotational invariance of the
honeycomb lattice. Stripe formation in the local charge density
naturally favors AFM correlations, since antiferromagnetic
superexchange is expected between the nearest-neighbor nearly
half-filled sites. We find three kinds of similar looking but distinct
collinear antiferromagnetic double-striped states named here S1
(see Fig. 4(d)), S2 (see Fig. 4(e)), and S3 (see Fig. 4(c)). In the S3

phase, the orientation of the AFM dimers (shown by ellipses
drawn around pair of opposite spins) are parallel to each other in
the stripe of dimers; whereas in the S2 phase we found AFM
dimers are oriented opposite to each other. In the S1 phase, which
is stabilized for the small U1=U0 values, the AFM dimers are
oriented parallel to each other, similar to S3, but the spins of
zigzag stripe and dimer stripe sitting at a distance of am(next-
nearest neighbout) are FM aligned, unlike in the S3 phase.

More exotic phases tend to appear at smaller values of U0=t
closer to the metal-insulator transition boundaries. We observed
a 10-sublattice non-coplanar phase named 10-vertices polyhe-
dron (P10v), displayed in Fig. 4(g), where 10 distinct non-coplanar
spins are placed on a double-striped Wigner crystal. The
orientation of the spins is shown on the left side of Fig. 4(g).
Note that the spin sets f1; 2; 3; 4; 5; 6g and f1; 9; 10; 4; 7; 8g lie
perfectly in the green and red planes, respectively, each set
making a little contorted hexagon (i.e., the angle between spins “5
and 6”, “5 and 4”, etc. is nearly 60�; the precise angle between the
red and green plane depends on the parameter values). The stripe
of the spins “4 and 1” (oriented opposite to each other) is an AFM
collinear stripe and the other stripe is non-collinear with either
spins “7, 8, 9, and 10” or “2, 3, 5, and 6” still having nearest-
neighbor AFM dimers similar to the Sð1;2;3Þ phases.

We noticed that for the larger screening length, namely with
robust long-range interactions, the non-coplanar phases are
stabilized in a larger region of the phase diagram for both n ¼
1=2 and 2=3 fillings. For n ¼ 2=3, we also observed, near the
U0=t ¼ 10 region and at large U1=U0, a state with AFM
hexagonal stripes made up of nearest-neighbor sites which are
separated by the nearest-neighbor AFM dimers, named Hex-
agonal Stripes (HS). The HS state respects the rotational
symmetry of the honeycomb lattice unlike the double-striped
states. We believe the double-striped Wigner crystal states will be
most relevant for experiments at filling n ¼ 2=3 for honeycomb
moiré superlattices. Its existence can be indirectly confirmed by
optical anisotropy measurements25.

Similarly to the n ¼ 1=2 case, we found a fully polarized FM
metallic phase for U1=U0 ¼ 0, but now a larger U0=t is required.
This n ¼ 2=3 fully polarized FM phase is rapidly suppressed
when including long-range interactions, contrary to the n ¼ 1=2
case. A large portion of the small U1=U0 phase diagram (for

Fig. 3 Results for filling n= 1/2. In a and b, the U1=U0 vs U0=t phase diagrams are shown for the screening lengths d ¼ 2am and d ¼ 10am, respectively.
The parameters U0, U1; t; and am corresponds to the onsite Coulomb interaction, nearest-neighbor Coulomb interaction, nearest-neighbor hopping, and
moiré lattice constant, respectively. c and d These illustrate the FM+WC (Ferromagnetic Wigner Crystal) and 120� � AFM (Antiferromagnetic) states
respectively. e This shows the net magnetizaion jmj and the pseudospin structure factor τzðqÞ at momentum q ¼ ð0;0Þ for 24 × 24 system size, and the
charge gap Δc for the 24 × 24 and 60 × 60 system sizes, for various values of U1=U0, at fixed U0=t ¼ 10 and d ¼ 10am . f and g These show the non-
coplanar states and the respective polyhedra corresponding to phases TP (Trigonal-Prism) and P12v (12-vertices polyhedron), respectively. The size of the
arrows and circles in c, d, f, g is proportional to the magnitude of the local spin hSii size and local density hnii, respectively.
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U0=t ≥ 10) is covered by the non-collinear Vortices phase, details
are shown in Supplementary Note 1.

We also estimated the metal-insulator transition line by
calculating the single particle density of states (shown in
Supplementary Note 3). We found that the low U1=U0 phases,
namely the FM and Vortices phases are mainly metallic. On
increasing the U1=U0, the FM and Vortices phases gradually
develops a weak charge density wave (CDW) and a small gap at
the chemical potential and eventually system transits into the
insulating Stripe phases with much stronger double-striped
Wigner crystallization. The thick-dashed black line in the phase
diagrams (in low U1=U0 region) depicts the metal-insulator
transition.

(c) n= 1/3 results. Figure 5(a, b) shows the U1=U0 vs U0=t phase
diagrams for n ¼ 1=3, again for both d ¼ 2am and d ¼ 10am. As
for other fillings, we will discuss the dominant phases in the
U0=t ≥ 10 region. In the large U1=U0 we found a Zigzag Wigner
crystal state with collinear AFM ordering ðAFM þWCÞ present
in a robust portion of the phase diagram, see Fig. 5(c). The
representative state for the AFM þWC phase, see Fig. 5(b), has
Bravais lattice vectors ð3x; 0Þ and ð0; ffiffiffi

3
p

yÞ. Similar zigzag pattern
states for filling n ¼ 1=3 in a honeycomb lattice, forming a charge

density, were also found by minimizing the energy of only the
interaction part of the Hamiltonian48. Intuitively, the robustness
of the AFM þWC phase suggests it may survive adding quantum
fluctuations because it dominates a large portion of the phase
diagram, and hence it may be present for real honeycomb moiré
materials at filling n ¼ 1=3. In the opposite limit of U1 ¼ 0, we
again notice a fully polarized metallic FM phase at large U0=t, as
at n ¼ 1=2 and 2=3 (near U0=t ¼ 10 we also found a spiral phase
in a small region). Turning on the long-range interactions, the
FM phase now manifests itself via various CDW arrangements, in
order of increasing U1=U0, for details see Supplementary Note 1.

For intermediate U1=U0, we found exotic magnetic patterns.
For example, the coplanar state with, again, strong zigzag charge
density wave stripes but with spins pointing at 120� with respect
to each other inside the zigzag stripe. However, the nearby twin
120� stripe is oriented along some arbitrary angle, see Fig. 5(d),
hence we name this state zigzag 120�-twin stripes (120�-TS).
Moreover, we also found a collinear state with long zigzag spin
stripes aligned opposite to each other, see Fig. 5(e). We believe
that these complex states emerge in the large U0=t and
intermediate U1=U0 region as a compromise between strong
tendencies towards an AFM Wigner crystal at larger U1=U0 and
ferromagnetism at smaller U1=U0. We noticed that for n ¼ 1=3

Fig. 4 Results for filling n= 2/3. In a and b, the U1=U0 vs U0=t phase diagrams are shown for screening lengths d ¼ 2am and d ¼ 10am, respectively. The
parameters U0, U1; t; and am corresponds to the onsite Coulomb interaction, nearest-neighbor Coulomb interaction, nearest-neighbor hopping, and moiré
lattice constant, respectively. The metal-insulator transition is illustrated by the thick-dashed black line in the low U1=U0 region. FM(AFM) stands for
ferromagnetic(antiferromagnetic). c, d, e, f, g display representative states of the Stripe-3 AFM (S3), Stripe-1 AFM (S1), Stripe-2 AFM (S2), Hexagonal
Stripes HS, and 10-vertices polyhedron (P10v), respectively. g This also shows the 10-vertices polyhedron corresponding to the state P10v. The set of spins
{1,2,3,4,5,6} and {7,8,1,9,10,4} lie in the green and red planes, respectively.

Fig. 5 Results for filling n= 1/3. In a and b, the U1=U0 vs U0=t phase diagrams for screening lengths d ¼ 2am and d ¼ 10am are shown, respectively. The
parameters U0, U1; t; and am corresponds to the onsite Coulomb interaction, nearest-neighbor Coulomb interaction, nearest-neighbor hopping, and moiré
lattice constant, respectively. FM, AFM, M, WC, TS, and CDW stands for ferromagnetic, antiferromagnetic, metal, Wigner crystal, twin stripes, and charge
density wave, respectively. c, d, e These show the representative states of Zigzag Wigner crystal with collinear AFM ordering (AFM+WC), Zigzag 120°-
Twin Stripes (120�-TS), and Long Zigzag collinear phase, respectively.
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we did not find any non-coplanar states, in contrast to the n ¼
1=2 and n ¼ 2=3 phase diagrams. This might be due to smaller
higher order exchanges between localized spins (like the ring-
exchange discussed for the n ¼ 1=2 case) because of relatively
larger distances between the half-filled sites of Zigzag Wigner
crystal states.

Our discovery of a variety of exotic spin arrangements close to
the dominant AFM and FM states, including the n ¼ 1=2
and n ¼ 2=3 exotic phases, is common occurrence in other
families of materials where there is strong phase competition,
such as in manganites49–53, ruthenates54, and ladder iron
superconductors55,56. These unusual states all arise because near
a possible first-order AFM-FM transition, there are spin
arrangements mixing both characteristics of the dominant states
that can reduce even further the energy.

Magnetization evolution as signature of exotic states. Not all
tools available to observe the magnetic structure of bulk materials
are available for two-dimensional moiré materials. In particular,
neutron diffraction methods cannot be applied because of small
sample sizes and magnetizations that are very small when mea-
sured per atom. Fortunately, it turns out that the total spin
magnetization of moiré materials can be measured optically3, at
least in the K-valley case. With the primary purpose of assessing
how optical studies might see the magnetization of moiré mate-
rials, in this section we will discuss the evolution of the net
magnetization jmj ¼ 2=Nej∑ihSiij with external magnetic field h
along the z direction, which adds a Zeeman splitting term
�1=2∑iðni" � ni#Þh to the Hamiltonian.

Firstly, we discuss the n ¼ 1=2 case (for d ¼ 10am), with main
focus on the phases at large U1=U0, namely the 120-AFM,
Trigonal Prism (TP), and 12-vertices polyhedron (P12v) phases.
We use two representative parameter points
[ðU0 ¼ 10t;U1=U0 ¼ 0:5Þ and ðU0 ¼ 16t;U1=U0 ¼ 0:45Þ] for
the 120-AFM state [see phase diagram in Fig. 3(b)]. The
magnetization evolution for the 120-AFM state is shown in
Fig. 6(a). As h=t ! 0, jmj increases linearly, jmj � χsh=t. We
find that the spin susceptibility defined as χs ¼ limh!0djmj=dh is
close to 8 and 16 for ðU0 ¼ 10t;U1=U0 ¼ 0:5Þ and
ðU0 ¼ 16t;U1=U0 ¼ 0:45Þ, respectively.

At ðU0 ¼ 10t;U1=U0 ¼ 0:5Þ a very clear jmj ¼ 1=3 plateau
was unveiled, while at ðU0 ¼ 16t;U1=U0 ¼ 0:45Þ this was
replaced by a small, but still visible, kink. The plateau in

magnetization signals the stability of a three-sublattice uud state,
where uðdÞ denotes up(down)-spin. This uud state is shown in the
inset of Fig. 6(a). The presence of a jmj ¼ 1=3 plateau in jmj vs h
curves was reported before for a quantum spin S ¼ 1=2 nearest-
neighbor antiferromagnetic Heisenberg model on a triangular
lattice, employing exact calculations at zero temperature57; the
classical spin Heisenberg model does not show this plateau58 at
least for the nearest-neighbor interactions. Thus, it is fascinating
that our HF calculations can capture this jmj ¼ 1=3 plateau in the
emergent triangular lattice Wigner crystal, especially at ðU0 ¼
10t;U1=U0 ¼ 0:5Þ which is close to the region of competition
with non-coplanar phases. As already discussed, ring-exchange is
expected to play an important role in non-coplanar phases. Thus,
it is reasonable to invoke such terms in the effective spin model to
explain the plateau’s formation in a mean-field calculation. This
conclusion is in agreement with calculations for the classical spin
models including ring-exchange which also shows plateau
formation in jmj vs h curves59,60.

We also investigated the evolution of jmj with h in non-
coplanar phases [see Fig. 6(b, c)]. We found that the Trigonal
Prism phase shows a very similar jmj vs h curve as displayed
before, i.e., with a linearly increasing jmj for small magnetic field
h and the presence of a jmj ¼ 1=3 plateau. The spin order in the
Trigonal Prism state breaks the rotational invariance of the lattice
unlike in the 120-AFM state. This symmetry breaking eventually
can be observed in transport measurements similarly as when
rotational symmetry broken by nematic order was recently
observed in experiments61,62. Thus, the combination of the jmj ¼
1=3 plateau, and also optical anisotropy measurements25, can be
used as the fingerprints of the TP phase and to distinguish this
phase from the 120-AFM state. The 12-vertices polyhedron phase
shows distinctively different features in the jmj evolution [see
Fig. 6(c)], with limh!0jmj � χshþ ah2 where a=χs>>1. For
example, at ðU0 ¼ 10t;U1=U0 ¼ 0:35Þ we found χs � 0:82 and
a � 5 ´ 104. We believe that the small susceptibility and robust
second-order term arises from the presence of ferromagnetic
exchange in the P12v phase: as discussed in ref. 44 the P12v phase
can be obtained from the ferromagnetic classical spin model with
ring-exchange on a triangular lattice. Moreover, we found the
presence of a jmj � 1=2 plateau with a slightly canted uuud state
(see inset of Fig. 6(c)) at location ðU0 ¼ 12t;U1=U0 ¼ 0:35Þ. We
noticed that having a robust jmj ¼ 1=2 plateau depends on the
parameter values we select, and was only present at large U0=t

Fig. 6 Magnetization in an external magnetic field. Evolution of the net magnetization jmj with an external magnetic field h (along z), at filling n ¼ 1=2 and
d ¼ 10am. We selected representative parameter points for the respective phases using the phase diagram Fig. 3(b). a This contains results for the points
ðU0 ¼ 10t;U1=U0 ¼ 0:5Þ and ðU0 ¼ 16t;U1=U0 ¼ 0:45Þ, choosen from the 120�-AFM (antiferromagnetic) phase region. b This displays results for the
Trigonal Prism (TP) state at ðU0 ¼ 10t;U1=U0 ¼ 0:4Þ and ðU0 ¼ 10t;U1=U0 ¼ 0:45Þ. Results for the 12-vertices polyhedron state (P12v) are shown in c at
ðU0 ¼ 10t;U1=U0 ¼ 0:35Þ and ðU0 ¼ 12t;U1=U0 ¼ 0:35Þ. The insets of a and c show the plateau states uud (jmj ¼ 1=3) and uuud (jmj ¼ 1=2), respectively.
The parameters U0, U1; t; and am corresponds to the onsite Coulomb interaction, nearest-neighbor Coulomb interaction, nearest-neighbor hopping, and
moiré lattice constant, respectively.
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values. The magnetization evolution for the P12v phase always
shows a first-order transition to the saturated ferromagnetic state,
with a robust jump of jΔmj≥ 1=2 unlike the case of the 120-AFM
and Trigonal Prism phases, where jmj smoothly increases up to
its saturation value with a gradual spin canting in the states.

The saturation magnetic field values can be converted in Teslas
using H ¼ h=2μB where μB is the Bohr magneton. Note that the
hopping parameter t increases with the twist angle (θ) between
the layers and varies in the approximate range f0:16; 3g meV for
θ 2 f1:5�; 2:5�g (for details, see Supplementary Note 5). Using
these hopping values, for a given U0=t we can crudely estimate
the range of saturation magnetic fields. For example, we checked
that in the 120� phase at ðU1=U0 ¼ 0:5;U0 ¼ 10tÞ (the point
with the largest saturation field h=t ¼ 0:24 in the phase diagram
of Fig. 3(b)) the saturation is reached at 0.35 T for t ¼ 1=6 meV
and at 6.2 T for t ¼ 3 meV. This analysis suggests that saturation
magnetic fields can easily be reached experimentally. We also
studied the magnetization evolution of Wigner crystal phases for
the fillings n ¼ 2=3 and 1=3 but did not find any fractional
magnetization plateaus (see Supplementary Note 4).

Influence of direct exchange interaction, quantum fluctua-
tions, and thermal fluctuations. In the present work, we did not
incorporate the direct exchange term (Si � Sj) in the Hamiltonian,
as shown in Eq. (1), thus the magnetic properties are only gen-
erated via kinetic exchange. In most theoretical studies of con-
ventional materials the direct exchange term is ignored because of
its small magnitude. More specifically, in theoretical studies of the
TMD triangular moiré superlattices the direct exchange has been
also ignored30–34. Consequently, as we investigated the new
honeycomb moiré lattice we kept our model simple and con-
sistent with similar models studied before in this field, and we did
not incorporate the direct exchange as well. Only recently, the
relevance of direct exchange was discussed in TMD moiré lattices
for half-filled bands63. In the present paper, however, our focus
was to analyze the magnetism in Wigner crystals at fractional
fillings. As shown in Fig. 2, in this limit the half-filled sites are
separated by almost empty sites (specially at n ¼ 1=2 and
n ¼ 1=3) which means only direct exchange terms beyond
nearest-neighbors can play an important role, and those are
expected to be even much smaller than nearest neighbors.
Moreover, at large values of the dielectric constant and large twist
angles the ratio (kinetic exchange)/(direct exchange) increases
and hence the kinetic exchange is expected to dominate magnetic
properties, as also shown in ref. 63. Thus, we believe that for the
moiré materials with large dielectric constant and large twist
angles (� 2� to 3�) our results are stable against introducing the
small direct exchange of real moiré materials. Moreover, the
dielectric constant will be enhanced in moiré materials by charge-
fluctuations between the valence moiré band and the lower
energy moiré bands, and also from the screening by nearby
conducting gate layers.

Incorporating the FM direct exchange will increase the
frustration as it will compete with the AFM superexchange.
Thus, at prima facie we believe adding direct exchange will
further increase the size of the region with the exotic non-
coplanar and non-collinear phases, because they are “sand-
wiched” between the small U1=U0 FM state and large U1=U0
AFM state. Thus, we anticipate that direct exchange can have
interesting consequences, specially in the presence of small twist
angle and weakly screened interactions, and those consequences
will reinforce our main conclusions. The influence of direct
exchange can certainly be studied in future.

Quantum fluctuations is another aspect that we have not
incorporated in the present work because we used a static mean-

field theory. Employing more sophisticated many-body techni-
ques applied to this complex problem are highly difficult. For
example, the use of density matrix renormalization group would
be problematic because of the high entanglement brought up by
the long-range interactions that will drastically increase the
number of states m needed, as compared with canonical short-
range models. Nonetheless, we can qualitatively anticipate what
the effect of quantum fluctuations will be. For example, as
discussed earlier, (1) the 120-AFM state we found in the n ¼ 1=2
Wigner crystal will likely survive including quantum fluctuations,
because even the more fluctuating just nearest-neighbor spin= 1/
2 Heisenberg model has also a 120-AFM state as the ground state,
both in mean field and with quantum effects included. (2) On the
other hand, the non-coplanar states we found for n ¼ 1=2 and
n ¼ 2=3 can become quantum spin liquids after incorporating
quantum fluctuations, because these states already have inbuilt
magnetic frustration. (3) The double-striped WC (n ¼ 2=3) and
zigzag WC (n ¼ 1=3) appear very stable because they survive up
to the largest values of U1=U0 and U0 studied in our phase
diagrams. However, embedded in these states are quasi-1D spin
chains and quasi-0D spin dimers, and it is very likely that after
adding quantum fluctuations the dimers in double-striped WC
(n ¼ 2=3) will become spin singlets while the quasi-1D spin
chains in the zigzag WC (n ¼ 1=3) and double-striped WC
(n ¼ 2=3) will behave as the 1D spin=1/2 Heisenbeg chains
leading to spin liquids. Similarly, the isolated hexagons and the
spin dimers of Fig. 4(f) will also have a strongly quantum nature.
Certainly, more sophisticated calculations are required to
investigate if the long-range kinetic exchange stabilizes the
long-range magnetic structures we found over the possibility of
quantum spin liquids. We anticipate in many cases quantum
fluctuations can drive these ordered states to quantum spin
liquids, as discussed above, rendering the search for experimental
realizations of these honeycomb systems even more pressing.

All our Hartree–Fock calculations were performed at zero
temperature. At finite temperature, a priori one anticipates that
the Mermin-Wagner (M-W) theorem forbids true long-range
order in any perfectly 2D moiré materials at any nonzero
temperature (not just our honeycomb system studied here but
any moiré material including those with triangular arrange-
ments). However, note that it is widely believed that 2D spin-spin
correlation lengths (ξ) behave with temperature T as ξ / eðA=TÞ

where A is a positive constant. Thus, at low temperatures these
correlation lengths can become very large, due to the essential
singularity growth as T is reduced. Then, ξ probably becomes of
the order of the inter defect distances, or larger, and the influence
of the M-W theorem will be masked by other effects. Moreover,
in our case the Coulombic interactions are of a long-range nature,
so the M-W theorem influence may be smaller than expected and
correlation lengths could be as large as several hundred lattice
spacings below a characteristic temperature, thus mimicking
long-range order.

Discussion
In this work, we comprehensively studied the U1=U0 vs U0=t
phase diagrams of a moiré honeycomb lattice model with long-
range Coulomb interactions, for fillings n ¼ 1=2; 1=3, and 2=3,
employing the Hartree Fock approximation. We believe this
study, specially the larger U1=U0 regions of the phase diagrams
with Wigner crystal ground states, is directly relevant for
potential future experiments on Γ-valley homobilayer-TMD’s,
such as MoSe2;MoS2, and WS219–21. Specifically, we have found
emergent patterns involving triangular lattices, double-striped,
and zig-zag Wigner crystals for the fillings n ¼ 1=2; 2=3; and 1=3,
respectively, in the region of robust long-range correlation
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strengths. These Wigner crystals can be directly observed using
recently developed high-resolution sensitive, but non-invasive,
scanning tunneling microscopy which has already been employed
to image Wigner crystals in fractionally filled triangular
WSe2=WS2 moiré superlattices26. Moreover, indications for stripe
and zig-zag charge ordering in Wigner crystals at n ¼ 2=3 and
1=3, respectively – states that break rotational symmetry – can be
indirectly observed via anisotropies in optical conductivity
measurements25.

We extensively studied the magnetism of Wigner crystal states
and found that the long-range interactions can lead to an unex-
pected abundance of exotic magnetic phases. As intuitive gui-
dance to the vast complexity observed, we noticed common
features at the three densities n ¼ 1=2; 1=3, and 2=3. For instance,
near the metal-insulator transition, the system always transits
from a FM-metal to an AFM Wigner crystal insulator (at robust
long-range electronic repulsion), often via an intermediate FM
charge density wave and other more complex states (with
jmj ¼ 0). These exotic states emerge from the competition
between the robust FM vs AFM Wigner system tendencies in the
small and large U1=U0 extremes of the phase diagram. We
noticed for all three fillings (1=2; 2=3; and 1=3) the fully polarized
FM (jmj ¼ 1) to AFM (jmj ¼ 0) transition is of first order. In
other words the magnetization drops from 1 to 0 suddenly on
increasing the strength of U1=U0, at fixed U0=t. As recently
shown, the magnetic field-induced Zeeman splitting in moiré
excitons can be used to measure the magnetic susceptibility and
the related Weiss constant, directly indicating whether the system
is in any of the above discussed FM to AFM regions3,64.

In real experiments, tuning the distance between the gate and
the device (D)23 directly affects the screening length d as d ¼ 2D,
which primarily corresponds to varying the U1=U0 strength of
the long-range interaction. Similarly, changing the dielectric
environment to tune the dielectric constant ε corresponds to
moving along the horizontal axis of our phase diagrams i.e.,
tuning U0=t while keeping constant U1=U0 because Ui / ε�1 for
any i≥ 0. Thus, we believe that changing the screening length and
dieletric enviroment can help to reach the most stable exotic non-
collinear and non-coplanar phases discussed in this work.

We also discussed the magnetization evolution with an external
magnetic field, for the various exotic states, which can be used
experimentally as indirect evidence for the states found here. Our
study shows that honeycomb moiré materials can harbor very
rich spin physics in two dimensions, as much as in the extensively
studied triangular moiré materials. Recent high resolution angle-
resolved photoemission spectroscopy and scanning tunneling
microscopy experiments have shown the presence of Γ-valley
moiré bands and its associated real-space honeycomb lattice,
respectively, in the twisted WSe2 homobilayer65. Moreover, ab-
initio calculations showed that the sufficient pressure on twisted
WSe2 homobilayer can push Γ-valley moiré bands to higher
energy, mainly above the K-valley bands, making them the
valence bands. Above discovery broadens the horizon of our work
as the results discussed in this paper can also be realized in the
already synthesized twisted WSe2 homobilayer materials. We
hope our study will also encourage experimentalists to synthesize
the Γ-valley homobilayer TMDs because exotic magnetic states
and Wigner crystals can potentially be achieved in these mate-
rials, as our work indicates.

Methods
Hartree–Fock decomposition. We will now describe the mean field method used
in this work. We can imagine the Lx ´ Ly lattice tessellated by an nx ´ ny number of
smaller cells of lx ´ ly size, where lxðyÞ ¼ LxðyÞ=nxðyÞ . In the basis of the smaller cells,

we can write the Hamiltonian interaction terms of Eq. (1) in the following manner:

Hint ¼U0 ∑
j;α;a

njαa"njαa# þ U1 ∑
jα
njα0njα1

þ 1=2 ∑
j;α≠α0 ;a;b

Uαα0
ab njαanjα0b

þ 1=2 ∑
j≠j0 ;α;α0 ;a;b

Ujj0αα0

ab niαanjα0b:

ð2Þ

Now the site index i of Eq. (1) is replaced by fj; αg, where j is the cell index and
α is the site index with respect to the jth cell. All four fermionic terms in the above
Hamiltonian are treated under the Hartree-Fock approximation. The (many) order
parameters to be used to minimize the energy are the elements of the single-particle
density matrix, namely hcyjαaσcj0α0bσ 0 i. We assume the mean-field solution can have
broken translational symmetry with a new emergent unit cell lx ´ ly . Under the
above assumption we can write that any observable satisfies
Oðj; α; j0; α0Þ ¼ Oðrj0 � rj; α

0; αÞ. After imposing the above assumption on the order

parameters, using cyjαaσ ¼ 1
ffiffiffiffiffiffiffi

Ncells

p ∑ke
ιk:rj cykαaσ we can write the Hamiltonian in

momentum (k) space as follows,

HHF
int ðkÞ ¼U0 ∑

α;a;σ
hnαa�σinkαaσ � ðhSþαaiS�kαa þ h:c:Þ

þ U1 ∑
α;σ;σ 0 ;a

hnα�aσ inkαaσ 0 � hcyα�aσcαaσ 0 icykαaσ 0 ckα�aσ

þ ∑
α≠α0;

a; b; σ; σ0

Uαα0
ab ðhnαaσ inkα0bσ 0 � hcyαaσcα0bσ 0 icykα0bσ 0 ckαaσ Þ

þ ∑
α; α0;

a; b; σ; σ0

�Uαα0

ab hnα0bσ 0 inkαaσ � Vα0bσ 0
αaσ ðkÞcykα0bσ 0 ckαaσ

ð3Þ

where �Uαα0

ab ¼ ∑j≠0U
0α;jα0

ab , and Vα0bσ 0
αaσ ðkÞ ¼ ∑j≠0U

0α;jα0

ab eιkjhcy0αaσcjα0bσ 0 i. The kinetic
energy term in k-space becomes

HKEðkÞ ¼ ∑
α;α0 ;a;b;σ;σ0

εαaσα0bσ 0 ðkÞcykαaσckα0bσ 0 ð4Þ

where εαaσα0bσ0 ðkÞ ¼ ∑jt
jαaσ
0α0bσ 0 e

ιk�rj . The total Hartree–Fock Hamiltonian is then
written as

HHF ¼ ∑
k
HKEðkÞ þ HHF

int ðkÞ � 1=2hHHF
int ðkÞi: ð5Þ

The main advantages of performing Hartree–Fock in this manner, for a given
lxðyÞ<LxðyÞ, is two folded: (i) as HHF is block-diagonal in k-space only the
diagonalizations of smaller block matrices corresponding to different k’s is needed,
rendering the calculation faster; (ii) unrestricted Hartree-Fock calculations starting
from random values tend to converge to inhomogenous states with higher energy
than the actual mean-field ground states found by our methodology. Here, by
performing calculations for various clusters lx ´ ly and comparing energies,
increases our confidence of convergence towards the true Hartree-Fock ground
state. Obviously for lxðyÞ ¼ LxðyÞ the above technique becomes the canonical real-
space unrestricted Hartree–Fock, which is also performed in the present work.

Convergence methodology. The Hartree–Fock ground state calculations were
performed for system sizes up to 12 × 12. Self-consistent solutions with a maximum
error of 10�5 were achieved starting from ten different random initial configura-
tions for the order parameters (while assuming the solution fits in 4 × 4, 6 × 6, and
12 × 12 emergent magnetic unit cells), which makes for a total of 30 runs for each
parameter point. The converged solution with the lowest energy was used as the
ground state. The number of different order parameters for the lx ¼ ly ¼ 12 case is
nearly 1.6 × 105, giving an idea of how challenging this effort becomes when
searching for unbiased results within real-space Hartree Fock. To accelerate the
convergence we used the Anderson mixing approach66.
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