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Reconstructing the spatial structure of quantum correlations
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Quantum correlations are a fundamental property of quantum many-body states. Yet they remain experimen-
tally elusive, hindering certification of genuine quantum behavior, especially in quantum materials. Here we
show that the momentum-dependent dynamical susceptibility measured via inelastic neutron scattering enables
the systematic reconstruction of quantum correlation functions, which express the degree of quantum coherence
in the fluctuations of two spins at arbitrary mutual distance. Using neutron scattering data on the compound
KCuF; — a system of weakly coupled S = 1/2 Heisenberg chains — and of numerically exact quantum Monte
Carlo data, we show that quantum correlations possess a radically different spatial structure with respect to
conventional correlations. Indeed, they exhibit a new emergent length of quantum-mechanical origin — the
quantum coherence length — which is finite at any finite temperature (including when long-range magnetic or-
der develops). Moreover, we show theoretically that coupled Heisenberg spin chains exhibit a form of quantum
monogamy, with a trade-off between quantum correlations along and transverse to the spin chains. These results
highlight real-space quantum correlators as an informative, model-independent means of probing the underlying

quantum state of real quantum materials.

Quantum superpositions are among the most profound and
fascinating phenomena in nature. They give rise to a variety
of quantum correlations, including entanglement [1] and Bell
nonlocality [2], both considered resources in quantum infor-
mation processing. Such quantum correlations have been ex-
perimentally demonstrated in systems of few degrees of free-
dom sufficiently isolated from their environment, such as pho-
tons [3, 4], atoms [5-7], and superconducting circuits [8, 9].
However, quantum materials—which host a wealth of exotic
physical states [10]—sit at the opposite end of the many-
body spectrum. They contain Avogadro numbers of quantum-
mechanical degrees of freedom, interacting strongly and lo-
cally, so that their physics is very sensitive to the underly-
ing system geometry. Certifying the quantum superposition
nature of such systems, and understanding effects of geom-
etry and dimensionality of interactions on quantum correla-
tions, represent grand challenges for quantum condensed mat-
ter physics, as well as new opportunities to understand the role
of quantum mechanics in macroscopic systems.

Fortunately, quantum information offers powerful tools for
probing quantum superpositions in generic systems in the
form of coherence measures [11-14]. Here we focus on
observable-based measures, which probe coherences of a
quantum state when represented on the eigenbasis of an ob-
servable, i.e. the non-commutativity between the observable
and the density matrix. Coherences manifest themselves in
interferometric experiments [13], and provide the basis of the
metrological sensitivity of a quantum state. Yet interferom-
etry is rarely accessible in the solid-state context; nor is the
density matrix itself. However, recent works [15—-17] have re-
lated quantum coherence measures for quantum states in ther-
mal equilibrium to linear response functions, which are di-
rectly accessible to solid-state spectroscopic techniques (such
as light scattering, AC magnetometry, or inelastic neutron
scattering). This link allowed neutron scattering experiments
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FIG. 1. Total vs. quantum correlations in S = 1/2 Heisenberg
chains. (a) Uncoupled 1D chains, and (b) chains subject to interchain
coupling. Total and quantum correlations are widely different at any
finite temperature. Whereas total correlations are enhanced in all
directions when coupling the chains at fixed temperature, quantum
correlations are redistributed spatially (at low temperatures), due to
an effective form of monogamy (i.e. mutual exclusion).

on quantum magnets [18, 20, 64] to reconstruct their quantum
Fisher information (QFI) [13, 21]. Measurements of QFI as-
sociated with order parameters have, in turn, led to estimates
of the entanglement depth — i.e. a lower bound to the min-
imal number of entangled degrees of freedom in a multipar-
tite entangled state — in the low-temperature phase of low-
dimensional magnets, such as spin chains and triangular anti-
ferromagnets [20, 22, 64].

Although the entanglement depth revealed by QFI is im-
portant, it does not reveal the spatial organization of quantum
correlations. In this work we show that a Fourier analysis of
the linear response function measured in neutron scattering,
reweighted by an appropriate quantum filter function, allows
one to extract the full spatial structure of quantum correla-
tions in a model-free manner, applicable to arbitrarily com-
plex systems. Importantly, such analysis can reveal surprising



and new information, even for very well-studied models and
materials.

Quantum correlation functions can be generally defined as
the difference between two types of correlations that are clas-
sically equivalent, and that coincide quantum-mechanically
only when the correlated observables commute with the state:
e.g the statistical correlations of two fluctuating observables,
and the response of an observable to a field coupling to the
other observable. This latter notion coincides with the quan-
tum covariance introduced in Ref. [23]; but related quantities
(connected to QFI or the Wigner-Yanase-Dyson skew infor-
mation (SI) [24], see Methods section) can also be defined.

Making use of neutron scattering data on the § = 1/2
Heisenberg antiferromagnetic chain system KCuF; [25, 26,
64] and quantum Monte Carlo (QMC) simulations, we show
that these quantum correlation functions share a common spa-
tial structure; and, unlike the ordinary correlation function,
they exhibit an exponential decay at all finite temperatures,
with an emergent quantum coherence length [23] which dif-
fers substantially from the ordinary correlation length. We
provide therefore a clear experimental observation of the
short-range nature of quantum correlations at finite temper-
ature, in agreement with recent numerical and analytical re-
sults [17, 23, 27]. We also show numerically that weakly
coupled antiferromagnetic chains at low temperature exhibit
stronger quantum correlations at short range than strongly
coupled chains, due to an effective form of “monogamy” (i.e.
mutual exclusion) of quantum correlations; see Fig. | for a
sketch summarizing the main results.

Theory of quantum correlation functions.—For a lattice
quantum system, we consider local Hermitian bounded op-
erators O;, with i the lattice site index; and introduce their
sum building up the extensive observable O = };0;. We
then consider the two-site dynamical susceptibility Xg;,of(‘*’)
[28], expressing the out-of-phase variation of the expecta-
tion value of O; in response to a periodic field oscillating at
frequency w and coupling to O;. Its mathematical expres-
sion reads Xg,»,o,-(‘“) = —fdt/h e~ 0i(D), 0;(0)]), where
(...) = Tr[(...)p] represents the thermal equilibrium average
at temperature T when p = eP7/Z, with 8 = (kgT)™', H
the system Hamiltonian, and Z the partition function. A fam-
ily of quantum correlation functions can then be related to the
two-site dynamical susceptibility via an integration over fre-
quency, weighted by an appropriate quantum filter function
h(Bhw),
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For C to be a well-defined measure of quantum coherence, the
function i(x) must satisfy basic mathematical properties [29—
32], namely A(x) ~ x when x — 0, and A(x — o0) = 1; in this
way it acts a high-pass filter for frequencies fiw > kgT, asso-
ciated with excitation modes behaving quantum-mechanically
at temperature 7. Summing Eq. (1) over the spatial indices
yields a quantum coherence measure associated with the ob-
servable O, I[O; h,p] = Zij ClO;, Oj; h, p].

In this work we focus mainly on the quantum covariance,
Covy, [17, 23] given by the filter function /Ay, (x) = coth x —
1/x; whose sum over spatial indices reconstructs the quan-
tum variance, Varg(O; p) [16]. This definition corresponds to
the difference between static correlations and static response
functions [16, 23], and consequently quantum variance and
covariance can be calculated efficiently with QMC. Similar
quantum correlation functions (corresponding to different fil-
ters) can be defined in the form of the quantum Fisher infor-
mation matrix (QFIM) [33] and the skew information matrix
(SIM), whose respective sums reconstruct the QFI and the SI
[24]; see Methods for their mathematical definitions.

Quantum correlation functions from neutron scattering.—
Inelastic neutron scattering gives access to the dynamical
structure factor S (k, w), related to the momentum-dependent
dynamical susceptibility via the fluctuation-dissipation theo-
rem "’ (k, w) = m(1 — e "P)S (k, w) [34], where y}(k,w) =
- fdt/h e O0(1), O_k(0)}) and O, = N71/2 3, e*7i0; is
the Fourier transform of the O; operators for a lattice with N
sites. If S (k, w) is measured across the full Brillouin zone, its
inverse Fourier transform allows one to reconstruct the two-
site dynamical susceptibility, and calculate the quantum cor-
relation functions.

To test this idea, we use the neutron scattering data reported
in Ref. [35] for KCuF3; see Methods for details. This material
is an ideal approximation to a system of coupled Heisenberg
S = 1/2 chains [26, 36]
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where S; is a S = 1/2 spin operator at site i; the first sum
runs on nearest-neighbor bonds along the chains; and the sec-
ond on bonds connecting nearest-neighboring chains to form
a tetragonal lattice. KCuF; has weak inter-chain coupling
J, = —1.6 meV compared to the in-chain one J = 34 meV
[37], causing weak long-range Néel order to appear at a low
critical temperature Ty = 39 K = 0.1J. Nevertheless, many
salient features of the one-dimensional physics (such as frac-
tional excitations at sufficiently high energy [26] and entan-
glement properties [64]) are preserved to low T in spite of the
long-range ordering.

In magnetic scattering such as from KCuF; the local op-
erators O; are given by the spin components S f‘ with y =
X, Y, z, and the measured two-site dynamical structure factor is
X,'»;-((L w) = 2v,u=x,y,z(6vu - é\]vé\]y)Xgr’Sg (q, w) [38] where g, are
the 4 = x,y,z components of the normalized scattering vec-
tor. In the Heisenberg (isotropic) limit, the spin components
act identically and )(If;(w) = % I ng,s“(‘”)' The quantum
correlation functions defined above can then be reconstructed,
along with the total correlation function
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The latter quantity is expected to exhibit an exponentially
decaying behavior for T > Ty, Ci (i, j) ~ exp(—|i — jl/&)
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FIG. 2. Total vs. quantum correlations in KCuF;. Reconstructed total and quantum correlations (expressed by the quantum covariance
Covy) along the spin chains of KCuFj; at various temperatures, compared with numerically exact QMC data. The error bars represent one

standard deviation uncertainty.

with & the correlation length; while the divergence of ¢ at
Ty entails the appearance of long-ranged correlations. On
the other hand, the quantum covariance Covy is expected
to exhibit an exponential decay at any finite temperature,
Covg(i, j) ~ exp(=|i — jl/&p) with &y defining the quantum
coherence length, which is finite at any finite temperature, and
coincides with £ only for 7 — 0. This behavior for Cov has
been numerically observed via QMC in Refs. [17, 23], and
only recently it has been shown as a rigorous result [27]. Yet
an experimental measurement of & is still lacking to date.

Quantum correlations for KCuF;.—Fig. 2 compares
Ci(i, j) and Cov for sites i, j belonging to the same chain,
as reconstructed from the neutron scattering structure factor
of KCuFj at various temperatures (T = 6, 50, 75, 150 and 200
K) above and below Ty. The experimental data are compared
with QMC data (obtained via the stochastic series expansion
method [39]) for a 10 x 10 array of 100-site spin chains. The
experimental results beautifully match the theoretical ones, in-
cluding the detailed structure clearly visible at short ranges.
The vast difference between the correlation length and the
emergent quantum coherence length is apparent: while the to-
tal correlations go from exponentially decaying (above Ty) to
decaying to a finite value (below Ty), the quantum covariance
clearly remains short-ranged at all temperatures, with a decay
length £y which is significantly smaller than &. This implies
that quantum correlations do not participate in the Néel tran-
sition, which is not surprising because of the classical nature
of the finite-temperature phase transition.

The asymptotic exponential decay is clearly exhibited by
Cit(i, j) for T > Ty and distances exceeding a few lattice
steps. The spatial structure of the quantum covariance is gen-
erally more complex (see Supplementary Material - SM - for
an extended discussion [40]); yet a first exponential decay sets
in after a few lattice steps, and this decay is clearly visible in
the experimental data. We shall focus on the length associ-
ated with this short-range decay in the following, and extract
it via a linear-regression (LR) estimator {p 1 r from a linear fit
of the logarithm of the correlation function (£g1r); or via a
second-moment estimator £y, (see Methods section). Fig. 3
shows the LR estimators for £ and &p, comparing experiment
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FIG. 3.  Quantum coherence length vs. entanglement depth.
(a) Quantum coherence length &y vs. total correlation length ¢ as
a function of temperature; (b) Entanglement depth estimated via
the quantum fluctuations of the in-chain staggered magnetization,
namely 4Vary (M chain) /N and QFI(M cnqin)/N. The plot also shows
12Vary/N, which is an upper bound to QFI(M; chin)/N, as well as
the lower and upper bounds on QFI(M;chin)/N from the skew in-
formation, 4SI/N and 8SI/N. Both panels compare QMC data and
experimental data on KCuF;. The error bars represent one standard
deviation uncertainty.

and numerical simulations, and exposing the large difference
between the two length scales.

One may wonder how the spatial extension of quantum
correlations relates to multipartite entanglement, namely the
entanglement depth. In fact there is a rigorous relation-
ship: the entanglement depth along the chains is bounded
from below by the Vary density or the QFI density for the
staggered magnetization My = 3.(=1)'S; of the individ-
ual chains, namely Varg(Mj chain)/N = 2., (=1)" Covo(i,i + r)
and QFI(Mchain)/N = >, (—=1)’QFIM(, i + r), where r runs
over distances along the chains. Indeed, when 4Varg/N > k
or when QFI/N > k, one can conclude that spins in each
chain exhibit at least (k + 1)-partite entanglement [16, 41, 42].
Fig. 3(b) shows the temperature dependence of 4Var, and
QFI for KCuF;, compared with the theoretical results for
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FIG. 4. Various quantum correlation functions evaluated for
KCuF; at 6 K. (a) The quantum Fisher information matrix, scaled
as QFIM/4. (b) The quantum covariance Covy. (c) The skew infor-
mation matrix SIM. (d) Correlation function using the simple filter
h°P(x) (see main text). In all panels the experimental data are com-
pared with the QMC data for Cov, for reference. The error bars
represent one standard deviation uncertainty.

4Var. Interestingly, the entanglement depth estimate offered
by these quantities is comparable to the quantum coherence
length, rising up to k + 1 = 4. In general one should ex-
pect quantum correlations to be systematically longer-ranged
than the depth of entanglement, given that entanglement is a
stronger form of correlation, and a quantum state can be quan-
tum correlated without being entangled [11].

The various quantum correlation functions offered by
Eq. (1) raise the question whether the quantum coherence
length is uniquely defined, or whether it depends on the spe-
cific choice of quantum filter 4. Fig. S1 shows that the same
exponential decay is exhibited by all quantum correlation
functions listed above (Covg, QFIM, SIM). In fact, it is a
rather robust feature, uniquely stemming from the high-pass
nature of A(x). To emphasize the universality, we also calcu-
late the most naive correlation using a step function filter,

1 ifx/2>1

step —
S {o ifx/2 <1 @

such that all intensity below fiw/2kgT is suppressed. Al-
though this filter function lacks the linear behavior at small
x required to define a proper quantum-coherence measure,
it resembles more closely filter functions that are naturally
applied in neutron-scattering experiments (see discussion be-
low). The plot in Fig. S1(d) shows the same general behavior
as the other quantum correlators. Thus, although details of the
quantum correlators depend on the filter function, the revealed
length scale appears universal.

Redistribution of quantum correlations upon changing the
interchain couplings.— We now embed the quantum corre-
lations in KCuF; within the broader family of coupled spin

chain models described by the Hamiltonian Eq. (2). Using
QMC simulations, we map the evolution of correlations and
of quantum coherence along the chains upon varying the in-
terchain coupling J,, in order to explore the effect of the di-
mensionality of interactions. In the case of total correlations,
an increase of |/ | at fixed temperature drives the system from
quasi-one-dimensional magnetism towards three-dimensional
magnetism, i.e. towards a regime exhibiting stronger correla-
tions in all spatial directions, both transverse and longitudinal
to the chains. This behavior is clearly exhibited by the in-
chain correlation length & shown in Fig. 5(a), whose sharp
rise upon lowering the temperature marks the evolution of the
Néel temperature with the interchain coupling [43].

On the other hand, quantum correlations are found to un-
dergo a rather different fate along the dimensional crossover
of the couplings. Fig. 5(b-c) shows the T" and J, dependence
of &g, and Varg(M chain)/N (a lower bound to the in-chain
entanglement depth). Contrary to total correlations, quantum
correlations along the chains appear to decrease upon increas-
ing the interchain couplings at low 7 (and the Néel transition
is nearly invisible to Varg(M; chain)/N). The quantum coher-
ence length & is in fact found to increase again at sufficiently
low temperature and sufficiently strong J, , but this is an effect
driven by the appearance of thin tails in the quantum correla-
tion function which have little effect on the integral given by
the quantum variance [40].

This result suggests that low-temperature quantum correla-
tions in coupled-chain systems exhibit a form of monogamy,
since a dimensional crossover in the couplings entails their
spatial redistribution from in-chain to inter-chain correlations.
In general, quantum correlations are not monogamous, as they
are associated with multipartite entanglement, which can im-
ply an arbitrary number of degrees of freedom. The above
behavior suggests that the Heisenberg two-spin couplings are
primarily promoting quantum correlations in the form of two-
spin entanglement — presumably via singlet/triplet formation
for antiferromagnetic/ferromagnetic couplings, respectively
— which is indeed monogamous [44, 45]. As a result, quan-
tum correlations along the chains decrease over shorter length
scales when the interchain coupling is increased. This result
shows that, among the family of coupled-chain Heisenberg
models, quasi-one-dimensional compounds such as KCuF3
exhibit the strongest quantum correlations at short distance,
whose detection via neutron scattering is most efficient. (In
the Supplemental Information [40] we also show that inter-
chain quantum correlations do not rise to the same strength as
that of intrachain ones over the range of interchain couplings
explored in this study.)

Discussion. These results have exciting implications far
beyond 1D spin chains. Firstly, our results on 1D chains
demonstrate that the spatial structure of quantum correla-
tions reveals new quantitative information about the dimen-
sionality of quantum materials, a fundamental property inher-
ently linked to quantum statistics and novel phases of mat-
ter. This is important as “low-dimensional materials” often
exist in a three-dimensional host crystal and retain weak three-
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FIG. 5. Total vs. quantum correlations for coupled Heisenberg chains from QMC data. (a) Second-moment estimator for the in-chain
correlation length &,, showing clearly the Néel order; (b) Quantum variance per spin of the in-chain staggered magnetization, 4Vary(M,)/N;
(c) second-moment estimator for the in-chain quantum coherence length £, ,. In all panels, the dashed line marks the value of J, /J realized

by KCuF;.

dimensional coupling. Our methods give access to the effec-
tive dimensionalities of quantum and total correlations, which
may be rather different in general, as our results clearly show.
In this respect, it is important to note that our quantum cor-
relator analysis is not restricted to neutron spectroscopy: any
momentum-resolved probe of dynamic susceptibility associ-
ated with local Hermitian operators will work in the same
fashion. For instance, quantum correlations in the charge
sector could be probed via X-ray scattering [46] or electron
energy-loss spectroscopy [47], offering complementary pic-
tures of quantum coherence in a huge variety of quantum ma-
terials.

Secondly, the quantum correlators are model-independent,
which allows precise statements to be made about materi-
als even in the absence of tractable theory. Therefore they
may yield important information about enigmatic condensed
matter states. For example, one could evaluate how the spa-
tial structure of quantum correlations changes across quantum
phase transitions (as in, e.g., heavy fermion materials [48]
or quantum magnets under fields). Recent works [17, 49]
showed that quantum correlations can reconstruct the quan-
tum critical fan occurring at finite temperatures above such
quantum critical points, thus certifying quantum criticality
and delineating the range of genuine quantum critical behav-
ior. Within the space of coupled spin chains, it would be in-
teresting to apply the same analysis to systems with frustrated
interchain coupling, such as Cs,CuCly [50, 51], in order to test
if frustration can stabilize the intrachain quantum correlation
length compared to the unfrustrated case studied here.

Thirdly and more generally, our results advance the syn-
thesis of condensed matter physics and quantum information.
Specifically, we show that experimental momentum-resolved
dynamical response functions at thermal equilibrium can be
mined for a wealth of many-body quantum information. The
ability to do this for a thermodynamic system at a well-defined
temperature is not shared by many other platforms for quan-
tum many-body physics. (For example, most quantum many-

body physics simulators based on atomic physics platforms do
not operate at thermal equilibrium; or, if they do so, their tem-
perature is not easily accessible or cannot easily be held fixed
[52-54]. As a consequence, a similar analysis to ours cannot
be straightforwardly conducted with e.g. cold atoms.) Hence
our results indicate a clear path for experiments on quantum
materials to positively contribute to quantum information the-
ory, by revealing the microscopic structure of quantum corre-
lations in many-body states.

On a different note, the fact that the step function filter cap-
tures the same behavior as the other quantum correlators sug-
gests that approximate results for the quantum length scale
can be experimentally obtained by neutron diffraction meth-
ods. At low temperatures where y”’'(k,w) = nS(k,w), the
filter function #*°P(x) can be traded for a physical neutron
transmission filter (e.g., beryllium powder) [55, 56], tuning
the incident neutron energy to act as a high-pass filter. For
suitable systems (specifically, low-bandwidth materials such
as CuSO4-5D,0 [57], YbAIOs [58], and Cs,CoCly [20]) it
offers a path towards quickly identifying if a material has sig-
nificant quantum correlations.

Conclusions. We have shown how the spatial structure of
quantum correlation functions for quantum spin systems can
be extracted from neutron spectroscopy data. The data re-
veal the existence of a fundamental length scale of quantum
mechanical origin — the quantum coherence length — lim-
iting the range of quantum correlations at all finite temper-
atures, which is wildly different from the correlation length.
Our study also highlights the role of dimensionality on quan-
tum correlations, showing that a stronger coupling between
Heisenberg chains leads to a redistribution of quantum cor-
relations from the chains to the transverse directions, in con-
trast to total correlations. As a consequence, within the fam-
ily of coupled-chain compounds, systems close to the one-
dimensional limit — such as KCuF; — exhibit the strongest
short-range quantum correlations and the weakest total cor-
relations. The fact that quantum correlators enabled new



observations—even for a well-studied model as the one-
dimensional Heisenberg chain—indicates that quantum cor-
relator analysis could be a powerful new way of assessing the
underlying quantum state of a vast number of quantum mate-
rials, both low- and higher-dimensional.
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Methods

Definitions of the quantum correlation functions and quantum
coherence measures.

The measurement of the momentum-resolved dynamical
susceptibility via neutron scattering allows one to reconstruct
any quantum correlation function C[O;, Oj; h, p] for the state
p having the form of Eq. (1) of the main text, dependent on
the filter function s. The double sum of the quantum corre-
lation function over its indices reconstructs in turn a relevant
quantum coherence measure, I[O; h,p] = %.;; C[O;, Oj; h, p].
In our work we explored the following coherence measures,
and related quantum correlation functions (we cite again the
quantum covariance for completeness):

1. the quantum Fisher information (QFI), I[O; 4hqF1, p] =
QFI(0; p) for which [15, 31, 59]

/’lQ]:](.X) = tanh (x/2) .

ClO;, O0j;4hqr, p] = QFIM[O;, Oj; p] expresses the
quantum Fisher information matrix (QFIM) [33];

2. the quantum variance (Varg) [16] I[O; hvargp] =
Varg(0; p) for which

hVarQ (x) = L(x/2),

where L(x) = cothx — 1/x the Langevin function.
ClO:, Oj; hyary,p] = CovglO;, Oj; p] expresses the
quantum covariance (Covyp) [17, 23]; and

3. the Wigner-Yanase-Dyson skew information (SI) [24]
I[O; hy, p] = S1,(O; p), for which

n _ cosh (x/2) — cosh [(a — 1/2) x]
a(0) = sinh (x/2) .

where 0 < @ < 1 is a parameter that takes the value
of @ = 1/2 in the original Wigner-Yanase defini-
tion [24], with Ay = tanh(x/4). Cl[O;, Oj; he,p] =
SIM,[0;, Oj; p] expresses the skew-information matrix
(SIM).

The Vary and Covg can be in fact obtained as the aver-
age of SI, and SIM, (respectively) on the @ index, since
fol dahy(x) = L(x/2). SI and SIM without the argument
a refer implicitly to the case @« = 1/2, which is the one
we focused on with the results shown in the main text. All
the above quantities are intimately linked by the inequality
chain Varp[O;p] < SI[O;p] < QFI[O;p]/4 < 2S1[0;p] <
3Varp[O; p].

The SI and SIM can be expressed in terms imaginary-time
correlation functions [31], and therefore, similarly to Var, and
Covy, they are accessible to QMC. On the other hand, the
QFI and QFIM requires instead the full reconstruction of the
dynamical susceptibility, which is not accessible to QMC di-
rectly, due to a notoriously ill-defined analytical continuation
of time-dependent correlations from imaginary to real time
[60].

Second-moment estimators

Figs. 5(a) and 5(c) show the second-moment estimator for
the in-chain correlation length and quantum coherence length
respectively, defined as

2 _ 12, r2[(S; - Sty

£ 2SS S )
r i i+r

for the correlation length; and similarly for the quantum co-
herence length, obtained by substituting |{.S; - S;;,)| with
Covg(i,i+r). These estimators allow for a systematic extrac-
tion of a typical length from all the correlation data produced
with QMC across the vast parameter range explored in Fig. 5.
In the case of the quantum correlations, Fig. 5(c) shows that
this estimator for the quantum coherence length is sensitive to
the buildup of a thin tail for large |/, |, as shown by the seem-
ingly non-monotonic behavior of £y, when increasing |J,|.
Indeed at very low T, &g, is first decreasing for small |/, |,
and then it increases again for larger |/, |. See the Supplemen-
tal Material for more details on the tails in Covg [40].



Experimental data processing

All experimental data used in this study was previously
published in [35], which involved a composite data set from
two different neutron experiments for temperatures 7 = 75 K
and above: SEQUOIA at the SNS [61] for low energy, and
MAPS at ISIS [62] for high energy. The data at 7 = 6 K
and 50 K are from ISIS. For the quantum correlators, we ap-
plied the formulae to the data as previously processed. How-
ever, for the conventional correlation length at 7 = 6 K, we
applied a resolution deconvolution. This is because KCuF3
at T = 6 K has long range magnetic order and a very long
correlation length (~ 700 sites [63]). Consequently, resolu-
tion broadening has to be corrected before the true long range
correlations will emerge. We did this by fitting the ¢ = 7
T = 6 K fiw = 0 scattering to a Gaussian function, and di-
viding the Fourier transformed structure factor by the Fourier
transformed Gaussian function. This resulted in a visible in-
crease in total correlations for » > 15. Foronly the 7 = 6 K
conventional correlations did this correction make any visible
difference.
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Comparing quantum correlators

For a comparison of the experimental and theoretical quan-
tum correlators at all measured temperatures, see Fig. SI.
Note that above T = 75 K, only a few nearest neighbors
have quantum correlations distinguishable from the large r
background noise. This is a consequence of the experimen-
tal background in KCuF3, which was previously discussed in
Ref. [64].

The DMRG data for the QFIM on isolated chains at finite
temperature, shown in Fig. S1, may erroneously suggest that
the latter quantity possesses a decay length which is system-
atically larger than that of e.g. Covgp. This discrepancy is
in fact not intrinsic, but it is rather the result of the fact that
the DMRG calculations are done on isolated chains, while the
theoretical curves for Cov are QMC data for coupled chains.
Indeed, as noted in the main text, the strength of the inter-
chain coupling J, makes a dramatic difference in the length
scale of the quantum correlator. Figure S2 shows this more
explicitly, with Cov plotted for the KCuF; value of J, and
for J, = 0. See also the detailed discussion of this topic in the
next section.

In the case of one-dimensional QMC simulations, we also
show the comparison between the quantum covariances on
two different system sizes (L = 100 and L = 200). The data
display minor differences over the range of distances which
are relevant for the experiment. We therefore conclude that
the QMC data we use for the quantum covariance are essen-
tially devoid of significant finite-size effects.

Evolution of quantum correlations upon changing the
interchain couplings

Here we discuss the detailed evolution of the spatial struc-
ture of quantum correlations upon changing the strength of the
coupling between Heisenberg chains, as stemming from our
experimental as well as theoretical data. Fig. S3 shows the
comparison between the experimental data on two different
quantum correlation functions (quantum covariance and the
quantum Fisher information matrix) for KCuF; at T = 6K,
and theoretical data obtained for a single one-dimensional
chain. In particular the theory data on quantum covariance
are obtained via quantum Monte Carlo (QMC) as in the main
text. On the other hand, the data for the quantum Fisher infor-
mation matrix are inaccessible to QMC, because they require

the full knowledge of the dynamical susceptibility. For one-
dimensional system, this knowledge can be obtained using
the density-matrix renormalization group (DMRG) [65, 66],
which allows for the calculation of S (k, w) at finite temper-
ature [67, 68]. Here we extend the finite-7T calculations re-
ported in Ref. [64] down to T = 6 K. We use the DMRG++
software [69] to study a system with open boundary condi-
tions, consisting of L = 50 physical sites, and 50 “ancilla”
sites. S (k,w) spectra are calculated using the Krylov-space
correction vector method [70, 71], with a Lorentzian energy
broadening with half width at half maximum n = 0.1J. For
details on how to reproduce the DMRG calculations, see the
supplemental material of Ref. [64].

As seen in Fig. S3, the predictions for the quantum corre-
lation functions of a single one-dimensional chain lie system-
atically above the measured values for KCuF3, while a much
better quantitative agreement is obtained when taking into ac-
count the small albeit finite interchain coupling J,, as shown
in Fig. S3(b). This indicates that, 1) the resolution of the ex-
periment is clearly sufficient to reconstruct the difference be-
tween isolated vs. weakly coupled Heisenberg chains, and 2)
moving from a single chain to coupled chains, quantum cor-
relations reorganize spatially, in such a way that correlations
along the chains are suppressed.

We examine this trend systematically via QMC, by mon-
itoring how the spatial structure of the quantum covariance
changes upon increasing the magnitude of the ferromagnetic
coupling (J, < 0) between the chains. In particular we exam-
ine the quantum covariance at 7 = 6 K (assuming an in-chain
coupling equal to that of KCuF3) along the chains, namely
Covg(i,i + x), taking x as the direction of extension of the
chains; and perpendicular to the chains, namely Covg(i, i +y),
where y is one of the two perpendicular lattice directions.
Fig. S4 shows that, upon increasing |/, |, the correlations along
a coordinate axis perpendicular to the chain become stronger,
as can be trivially expected — albeit remaining much weaker
than the in-chain correlations for the whole range of values
of J, we explored (|[J.| < J/2). On the other hand, the
in-chain quantum covariance undergoes a much more com-
plex evolution: it becomes significantly weaker at short range
when |/, | increases, witnessing a form of monogamy of short-
range quantum correlations, as discussed in the main text. Yet
the behavior at long range shows an opposite trend for suffi-
ciently large |/, |, as the in-chain quantum covariance develops
a stronger tail. This tail can be associated with the appearance
of long-range multipartite quantum correlations. Such corre-
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FIG. S2. Quantum covariance from quantum Monte Carlo

(QMC) for coupled and uncoupled chains. The quantum covari-
ance is much longer ranged in the one-dimensional J, = O limit.
Meanwhile the chain length slightly decreases the length scale, in
accord with the periodic boundary being further away.

lations are expected in a long-range-ordered quantum ground
state, such as that of a system of coupled Heisenberg chains;
and their multipartite nature makes them no longer monoga-

mous. Nonetheless, the long-range tail is rather thin, and it
gives a small contribution to the quantum variance of the in-
chain staggered magnetization, so that the global trend is a
decrease of this quantity with |J,|, as shown in Fig. 5(b) of
the main text.

The buildup of increasingly strong multipartite quantum
correlations and entanglement upon coupling the chains is
clearly exhibited in Fig. S5, in which the quantum variance
density of the order parameter Mg = ¥, ¢'QTiS 7 is shown; the
ordering vector Q being (r,0,0) for J, < 0 and (r, 7, ) for
J1 = 0. One clearly observes that rather massive entangle-
ment sets in at low temperatures in the more strongly cou-
pled chains — involving > 40 spins within the temperature and
parameter range we explored. Yet this behavior really stems
from the buildup of correlations transverse to the chains — as
can be easily deduced by comparing with Fig. 5(b) of the main
text.

[64] A. Scheie, P. Laurell, A. M. Samarakoon, B. Lake, S. E. Nagler,
G. E. Granroth, S. Okamoto, G. Alvarez, and D. A. Tennant,
Phys. Rev. B 103, 224434 (2021), URL https://link.aps.


https://link.aps.org/doi/10.1103/PhysRevB.103.224434

10° — DMRG 6K 3
KCUF3 6K
1071}
=
[T
O 1072
-3 L
10 (a) q
—-- QMC COVQ, J1 =00
10—1 i — QMC COVQ, J1=-0015J |
#  KCuF; 6K
o
>
o
) ——a
10—3 L
(b)
0 5 10 15 20
r
FIG. S3. Comparison between 1d theoretical QFIM (a) and

quantum covariance (b), and experimental KCuF; data at 6K.
For comparison, the QMC result for KCuF; J, is also shown in (b).
Note the r > 10 experimental values are systematically smaller than
the theoretical 1D calculations as a consequence of finite interchain
coupling J, .

S3

org/doi/10.1103/PhysRevB.103.224434.

[65] S. R. White, Phys. Rev. Lett. 69, 2863 (1992), URL https:
//1link.aps.org/doi/10.1103/PhysRevLett.69.2863.

[66] S. R. White, Phys. Rev. B 48, 10345 (1993), URL https://
link.aps.org/doi/10.1103/PhysRevB.48.10345.

[67] A. E. Feiguin and S. R. White, Phys. Rev. B 72,
220401(R) (2005), URL https://link.aps.org/doi/10.
1103/PhysRevB.72.220401.

[68] T. Barthel, U. Schollwock, and S. R. White, Phys. Rev. B
79, 245101 (2009), URL https://link.aps.org/doi/10.
1103 /PhysRevB.79.245101.

[69] G. Alvarez, Comp. Phys. Comms. 180, 1572-1578 (2009),
URL https://doi.org/10.1016/j.cpc.2009.02.016.

[70] T. D. Kihner and S. R. White, Phys. Rev. B 60,
335 (1999), URL https://link.aps.org/doi/10.1103/
PhysRevB.60.335.

[71] A. Nocera and G. Alvarez, Phys. Rev. E 94, 053308 (2016),
URL https://link.aps.org/doi/10.1103/PhysRevE.
94.053308.


https://link.aps.org/doi/10.1103/PhysRevB.103.224434
https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
https://link.aps.org/doi/10.1103/PhysRevB.48.10345
https://link.aps.org/doi/10.1103/PhysRevB.48.10345
https://link.aps.org/doi/10.1103/PhysRevB.72.220401
https://link.aps.org/doi/10.1103/PhysRevB.72.220401
https://link.aps.org/doi/10.1103/PhysRevB.79.245101
https://link.aps.org/doi/10.1103/PhysRevB.79.245101
https://doi.org/10.1016/j.cpc.2009.02.016
https://link.aps.org/doi/10.1103/PhysRevB.60.335
https://link.aps.org/doi/10.1103/PhysRevB.60.335
https://link.aps.org/doi/10.1103/PhysRevE.94.053308
https://link.aps.org/doi/10.1103/PhysRevE.94.053308

I I
in-chain =e= E
perp -e=
—0.047
-5 | | | |
1070790 20 30 40 50
r
1 I I I
10 in-chain =e= E
perp -e=
1072

FIG. S4. Dependence of Cov, on J, . Dependence of the quantum covariance on the ferromagnetic interchain coupling J, for J, /J = —0.047
(as for KCuF3), —0.1, —=0.2, —0.4 and —0.5, at a temperature 7 /kg = 6J/388 (corresponding to 6K for KCuF;). The panels show QMC data
obtained for a system with size 100 x 20 x 20. Each panel shows the in-chain correlations (Covy(i, i + x), taking x as the lattice direction

| | | | |
0 10 20 30 40 50

r

107°

in-chain =e=
perp ==

J E
- 01
J ]

| | |
10 20 30 40 50

in-chain =e~

perp =~
J E
L= 0.4
J ]

| | | | ]
0 10 20 30 40 50
r

parallel to the chains) and the correlations perpendicular to the chain (e.g. Covy(i,i + y)).

100

AVar(Mq)/N

KCUFg

o 1M

102

—

] ]
04 -0.2

1
0 02 04

Ji)J

40
35
30
25
20
15
10
5

FIG. S5. Quantum variance density of the order parameter for
coupled Heisenberg chains. The ordering vector Q is (r, 0,0) for

J, <0and (mr,n,x) for J, = 0.

_1 a
10 in-chain =e=
5 perp -
107 J E
L —0.2 ]

107

| | | |
0 10 20 30 40 50
r
T T T
107 o -
in-chain =e= J
5 perp ==
10 J E
= =05
3 J i
10°F
104
10—5 i \ | | ]
0 10 20 30 40 50

r



	Reconstructing the spatial structure of quantum correlations
	Abstract
	Acknowledgements
	Acknowledgments
	Author contributions
	Methods
	Definitions of the quantum correlation functions and quantum coherence measures.
	Second-moment estimators
	Experimental data processing

	References

	Supplementary Information for Reconstructing the spatial structure of quantum correlations
	Comparing quantum correlators
	Evolution of quantum correlations upon changing the interchain couplings
	References


