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Motivated by recent experimental reports of Majorana zero modes (MZMs) in quantum-dot systems at the
“sweet spot”, where the electronic hopping th is equal to the superconducting coupling ∆, we study the
time-dependent spectroscopy corresponding to the non-trivial fusion of MZMs. The expression non-trivial
refers to the fusion of Majoranas from different original pairs of MZMs, each with well-defined parities. For the
first time, we employ an experimentally accessible time-dependent real-space local density-of-states (LDOS)
method to investigate the non-trivial MZMs fusion outcomes in canonical chains and in a Y-shape array of
interacting electrons. In the case of quantum-dot chains where two pairs of MZMs are initially disconnected,
after fusion we find equal-height peaks in the electron and hole components of the LDOS, signaling non-trivial
fusion into both the vacuum I and fermion Ψ channels with equal weight. For π-junction quantum-dot
chains, where the superconducting phase has opposite signs on the left and right portions of the chain, after
the non-trivial fusion, surprisingly we observed the formation of an exotic two-site MZM near the center of
the chain, coexisting with another single-site MZM. Furthermore, we also studied the fusion of three MZMs
in the Y-shape geometry. In this case, after the fusion we observed the novel formation of another exotic
multi-site MZM, with properties depending on the connection and geometry of the central region of the Y-shape
quantum-dot array.

Introduction

Majorana zero modes are attracting much attention due
to their potential application in developing fault-tolerant
quantum computation [1–3]. The Majorana zero modes
(MZMs) follow non-Abelian statistics and allow the non-local
encoding of quantum information, which makes MZMs
good candidates to utilize as qubits in topological quantum
computations [3–5]. Recently, in coupled quantum-dot
systems, a pair of localized MZMs were observed in the
tunneling conductance measurements at the sweet spot th =
∆, where the electronic hopping th and superconducting
coupling ∆ are equal in magnitude [6]. These quantum-dot
systems [7–11] allow to realize the idealized Kitaev chain with
gate-tunable experimental parameters [12–14]. Realizing
MZMs via quantum dots significantly reduces the problem
of formation and detection of the MZMs, as compared to
the more standard proximitized semiconducting nano-wire
systems which are affected by random disorder [7, 15].

This recent experimental progress in quantum-dot systems
provides a platform to test the non-Abelian statistics of
Majorana fermionic candidates [6]. Fusion and braiding are
two fundamental characteristics of non-Abelian anyons [16,
17]. The realization of MZMs at the sweet spot allows the
study of the fusion and braiding of MZMs even in small
systems [6] (because in this case the MZMs are fully localized
at a single site), as compared to the semiconducting nanowires
that need a more extensive system. The sweet spot also
facilitates analytical calculations for special cases [18, 19].
The fusion of MZMs and detection of their outcomes in
quantum-dot experiments are expected to be easier than
performing braiding of MZMs in other platforms.

The multiple fusion outcomes of MZMs, γ×γ = I+Ψ, are
related to their non-Abelian statistics [3], because two MZMs

(γ) after fusion can result in either vacuum (I) or a fermion
(Ψ) [16]. However, the fusion of MZMs can be designed in
two ways, namely a “trivial” and a “non-trivial” procedure.
In the trivial case, the fusion outcome is deterministic (either
a full electron or full hole) as the fusion of MZMs occurs
within the same pair with well-defined parity +1 or -1.
This trivial fusion can be performed using just one pair of
MZMs in a chain, by moving one edge MZM towards the
other edge MZM [20]. On the other hand, the non-trivial
fusion refers to the fusion of Majoranas belonging to different
initially disconnected pairs of MZMs each with pre-defined
parities. In this non-trivial case, the fusion outcomes becomes
probabilistic [16], not deterministic, and can yield both
electron and hole. In order to perform non-trivial MZMs,
we need at least two-pairs of MZMs, i.e. at least four
MZMs. This paper mainly focuses on the time-dependent
non-trivial fusion using two and three pairs of MZMs in
models simulating interacting quantum-dot systems.

For the more canonical semiconductor nanowire setups, the
detection of the fusion outcome of MZMs has been proposed
by charge sensing based on dynamical Bogoliubov-de Gennes
simulations [16, 21, 22]. Recently, in the context of coupled
quantum dots, the detection of the fusion of MZMs has
been suggested using the parity readout of the systems [23].
Even without fusing the MZMs, by preparing the two pairs
of MZMs in two different ways, the testing of fusion
outcome has been proposed by observing the fermionic
parity readout (deterministic or probabilistic) [23]. Compared
to previous theoretical studies, here we propose for the
first time detecting fusion outcomes using a time-dependent
real-space local density-of-states method (LDOS(ω, t)) [20]
in both canonical chains and in Y-shape arrays of interacting
quantum dots. The LDOS(ω, t) should be experimentally
accessible via tunneling conductance measurements in the
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existing quantum-dot setups [6, 24].

(a) One dimensional chain
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FIG. 1. Non-trivial fusion of Majoranas. (a) Schematic
representation of two pairs of Majorana zero modes ( [γ1, γ2] and
[γ3, γ4]) in a quantum dot array. At time t = 0, the parities of the left
P12 = −i⟨γ1γ2⟩ and right P34 = −i⟨γ3γ4⟩ pairs of MZMs are well
defined. There is no hopping and no pairing coupling between the
Majoranas γ2 and γ3. (b) Schematic representation of the three-pairs
of Majoranas zero modes in Y -shape geometry. At time t = 0, the
parities of three pairs of MZMs P12 = −i⟨γ1γ2⟩, P34 = −i⟨γ3γ4⟩
and P56 = −i⟨γ5γ6⟩ are well defined. Initially, there is no hopping
and pairing coupling between the three central Majoranas γ2,γ3 and
γ5. For non-trivial fusion, the time-dependent hopping and pairing
amplitude between the different pairs of MZMs were varied with
time.

Motivated by the recent experimental realization of a
minimal Kitaev chain in quantum dots coupled by a
short superconductor-semiconductor hybrid (SC-SM) [6,
25], here we study the non-trivial fusion of MZMs in
quantum-dot arrays at the sweet spot (th = ∆). In the
quantum dot experiments, the hopping and superconducting
coupling between the quantum dots are tunable by changing
the electrostatic gate [12, 14, 26]. In this work, to
observe the time-dependent non-trivial fusion, we tune
the time-dependent hopping and superconducting coupling
between quantum-dot arrays, where two different pairs of
MZMs exist with pre-defined parities. We implement
the time-dependent exact-diagonalization method using all
the many-body states of interacting electrons of finite-size
systems to study the spectroscopy of the non-trivial fusion of
MZMs [20]. In the case of two one-dimensional chains with
two pairs of MZMs (see Fig. 1a), we find equal height peaks in
the electron and hole components of the LDOS(ω, t), showing

the formation of both electron Ψ and vacuum channels.
Surprisingly, due to the non-equilibrium effects and parity
conservation of the time-evolving many-body state, we find
the equal magnitude of electron and hole peaks at both ±ω
energies in LDOS(ω, t). In contrast to previous studies, for
the first time we discuss the effect of repulsive Coulomb
interaction on non-trivial fusion. We find an asymmetry in the
LDOS(ω, t) peaks at ±ω with increase in repulsive Coulomb
interaction.

For the π-junction, where the two pairs of MZMs are
initialized with opposite signs of the pairing amplitude after
the fusion, we find that one of the central MZMs remains
unaffected, while the second single-site MZM is transformed
to a two-site non-local MZM. In fact, we find that this two-site
MZM is formed after tunneling through the centrally localized
one-site MZM. The tunneling of half of the second MZM
through another centrally localized one-site MZM is a novel
effect in a strictly one-dimensional geometry [27].

Furthermore, we study the time-dependent fusion of an
odd number (three) of Majoranas, where the three pairs of
MZMs are initialized in a Y -shape geometry (see Fig. 1b) .
Surprisingly, during the fusion process we find zero energy
peaks in the LDOS(ω, t) for three different central sites in
addition to the electron and hole peaks at finite energies. After
the fusion of Majoranas, we find the formation of an exotic
multi-site MZM. Interestingly, the nature of multi-site MZMs
depends on the connection and direction of the couplings near
the center, which joins the legs of a Y -shape quantum-dot
array.

Results

Non-trivial fusion of MZMs in one-dimensional chain

In this section, we will consider two one-dimensional
quantum-dot arrays at the sweet-spot, with the same sign for
the superconducting phase (ϕ1 = ϕ2 = 0). These two left and
right short wires are coupled through time-dependent hopping
(th(t)) and pairing (∆(t)) terms, which can be tuned by
changing the gate potential adiabatically. In the quantum-dot
experiment the hopping and pairing terms between the two
quantum dots are tuned by modifying the properties of
Andreev bound states in a superconductor-semiconductor
hybrid (SC-SM) [14, 26]. These properties are controlled by
an electrostatic gate connected to the SC-SM hybrid segment.
The effective Hamiltonian for the quantum-dots arrays under
the approximation of using only one level per quantum dot
then becomes:

HL =

l−1∑
j=1

(
−thc

†
j cj+1 + eiϕ1∆cjcj+1 +H.c.

)
, (1)

HR =

2l∑
j=l+1

(
−thc

†
j cj+1 + eiϕ2∆cjcj+1 +H.c.

)
, (2)

HC(t) =
(
−th(t)c

†
l cl+1 +∆(t)clcl+1 +H.c.

)
. (3)
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FIG. 2. (a) Schematic representation of two pairs of MZMs using a 12-sites quantum dots array with same left and right superconducting
phases ϕ1 = ϕ2 = 0. At time t = 0, there is no hopping and no pairing coupling between the Majoranas γ2 and γ3. The time-dependent
hopping and pairing coupling between sites j = 6 and 7 can be established by reducing the “barrier” between the left and right portions of the
12-site chain, leading to the non-trivial fusion of the central MZMs γ2 and γ3. (b) After the fusion at time t = T , the system has one MZM at
each end site. (c) Four lowest many-body-eigenstates En vs. the linear variation in hopping t

h
6,7 and pairing terms of the central bond. Each

line shown has degeneracy two. (d,e,f) The ground state electron and hole portions of the LD(ω, j) varying the parameters th6,7 and ∆6,7 at
site j = 6 and for the cases t

h
6,7 = 0.05, 0.2 and 0.4. (g,h,i) The electron and hole components of the time-dependent LD(ω, t, j) at site

j = 6 and for different times t, at V = 0.05. (j,k,l)The LD
e
(ω, t, j) and LD

h
(ω, t, j) at site j = 6 at different times t and for V = 0.5.

The Coulomb interaction between quantum dots is the
standard:

HInt =

2l∑
j=1

(
V njnj+1

)
. (4)

(a) The case ϕ1 = ϕ2 = 0
At time t = 0, there is no hopping and superconducting
coupling between the two wires. As shown in Fig. 2a, the
system has two separate pairs of MZMs (γ1, γ2) and (γ3, γ4),
with well defined parities P12 = −i⟨γ1γ2⟩ = −1 and P34 =
−i⟨γ3γ4⟩ = −1. The total parity (full system) of the initial
many-body state can be calculated as Ptot = eiπ

∑
j nj [28].

The presence of four MZMs at t = 0 results in a four-fold
degenerate ground state, as we can potentially create two
spinless fermions by combining these four MZMs in pairs
(thus we have degeneracy 22 = 4). Fusing the MZMs
within the same pair (with parity −1 as example), namely γ1
and γ2 or γ3 and γ4, using a height-variable potential wall
in between them, results in the formation of a full electron
(trivial fusion) [20]. This trivial fusion reveals only one fusion
channel Ψ with deterministic formation of a full electron. On

the other hand, the non-trivial fusion of our focus in this paper
is expected to produce both fusion channels and a more exotic
intermediate dynamics.

We first start with the static case, i.e by varying the hopping
(th6,7) and pairing (∆6,7) terms between two wire segments
linearly as a parameter. The coupling term between the left
and right portions of the arrays, using the transformation
cj = 1√

2

(
γA
j + iγB

j

)
at th6,7 = ∆6,7, can be written

in terms of Majorana operators as HC
6,7 = 2i∆6,7γ

B
6 γA

7 .
By changing ∆6,7 the two central Majoranas will overlap,
leading to the breaking of the four-fold degeneracy of the
ground state. The four-fold degenerate ground state splits
into two pairs [(E1, E2)and(E3, E4)] of two-fold degenerate
states with combination of even and odd fermion parity (see
Fig. 2c). In order to observe the fusion outcome, we calculate
the electron LDe

j (ω) and hole LDh
j (ω) components of the

local-density of states at site j = 6 (site j = 7 has similar
LDj(ω) by symmetry).

Using the eigenvectors {|Ψm⟩} of the Hamiltonian
H (Eqs. 1-4), the electronic component of the local
density-of-states (LDj(ω)) for site j can be written as [20,
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29]:

LDe
j (ω, ) = − 1

π
Im

(∑
m

∣∣⟨Ψm|cj |Ψ1⟩
∣∣2

ω + Em − E1 + iη

)
. (5)

At ∆6,7 = th6,7 = 0, the peak at ω = E1 − Em = 0 in
LDe

j (ω) for site j = 6 arises from the transition between
degenerate ground states (m = 2 and m = 1) with opposite
fermionic parity. The hole part LDh

j (ω) also shows an equal
height peak at ω = 0, indicating the presence of a localized
MZM at site j = 6 (and at j = 7). By changing th6,7, as
shown in Fig. 2(d,e,f), the electron part LDe

j (ω) shows peaks
close to ω = −2th6,7, whereas the hole part shows peaks close
to ω = +2th6,7, displaying the formation of both an electron
and a hole at finite ω. These electron and hole components
of LDj(ω) have equal height, within numerical accuracy, for
smaller values of V = 0.05, confirming the formation of
equal magnitude electron and hole components during the
non-trivial fusion of two central Majoranas.

However, in real experiments of fusion of MZMs, one
needs to change the hopping and pairing amplitude as a
function of time close to the adiabatic limit in a dynamical
way, as opposed to simply modifying parameters in the
Hamiltonian and re-diagonalizing at each time. Namely, in the
real experiments the outcome depends on the initial condition
and on the speed of the process.

Here, we perform time-dependent fusion of MZMs by
changing the hopping according to the formula th(t) =
th(T )

nδt
τ , where 1/τ is the quenched rate, δt = 0.001 is

the small time step we used, and n is the integer number of
those steps, such that the th(t) at sites j = 6 and 7 increases
approximately linearly from 0 to 1 in a time τ = 100. At
final time t = T , the time dependent hopping becomes equal
to th(T ) = 1. For the time evolution, we chose the initial
many-body state |Ψ(0)⟩ with total parity Ptot = +1 (this
parity is chosen because it corresponds to the ground state at
nonzero V ).

To observe the fusion outcomes at intermediate time
t, first we evolve the initial many-body state |Ψ(0)⟩ up
to time t, then we calculate the time-dependent electron
LDe

j (ω, t) and hole LDh
j (ω, t) parts of the local-density of

states (see Method section). Using the eigenvectors of the
instantaneous Hamiltonian HI(t) and |Ψ(t)⟩ at time t, the
electronic component of LDj(ω, t) at site j can be written
as LDe

j (ω, t) [20] :

=
−1

π
Im

(∑
m,n

⟨Ψ(t)|c+j |Ψn⟩⟨Ψn|cj |Ψm⟩⟨Ψm|Ψ(t)⟩
en − em + ω + iη

)
. (6)

Similarly, the hole component of LDj(ω, t) at site j can be
written as LDh

j (ω, t) [20]:

=
−1

π
Im

(∑
m,n

⟨Ψ(t)|Ψn⟩⟨Ψn|cj |Ψm⟩⟨Ψm|c†j |Ψ(t)⟩
en − em + ω + iη

)
. (7)

Interestingly, with increase in the couplings th(t) and
∆(t), the electron LDe

j (ω, t) and hole LDh
j (ω, t) both shows

equal-height sub-gap peaks close to ω = ±th(T )
2t
τ (in the

rest of the paper, we use th(T ) = 1) for V = 0.05, reflecting
the formation of equal amounts of electron and hole at positive
and negative values of ω [see Figs. 2(g,h,i)]. This is in contrast
to the static case, where only an electron forms at negative
values of ω and only a hole forms at positive values of ω
[ Figs. 2(d,e,f)]. Thus, the appearance of equal magnitude
electron and hole components at both frequencies ω = ±2t/τ ,
is clearly a non-equilibrium effect and it is influenced by the
conservation of total parity of |Ψ(t)⟩. Due to this dynamics,
the time-evolving wavefunction |Ψ(t)⟩ has an equal overlap
with low-energy states |Ψ1⟩ and |Ψ3⟩ (with same total parity
P = +1). This allows for similar spectral weights close to
ω = −2t/τ in LDe

j (ω, t) (transition from state m = 1 to
n = 4) and LDh

j (ω, t) (from state m = 2 to n = 3), and also
similar spectral weights close to ω = +2t/τ in LDe

j (ω, t)
(resulting from a transition from state m = 3 to n = 2) and in
LDh

j (ω, t) (from state m = 4 to n = 1).
The equal superposition of two low-energy many-body

states in |Ψ(t)⟩ even for large τ = 100 (we have also checked
for the case τ = 500 and the results are the same) is a
unique property of non-trivial fusion. In the trivial fusion for
the larger τ , the time evolving wave-function |Ψ(t)⟩ overlap
only with one low-energy state of the instantaneous ground
states manifold of the time evolving Hamiltonian. Introducing
a time-dependent hopping th(t) and pairing ∆(t), the fuse
of the MZMs γ2 and γ3 occurs non-trivially because the
MZMs are from different pairs. The th(t) and ∆(t) allows
for tunneling of a single electron (or a pair of electrons)
from the left to the right chain portions during the fusion
process, which changes the individual parities of those left
and right quantum-dot segments, but the total parity of the
many-body state |Ψ(t)⟩ remains the same [30]. This results in
the formation of both fermion Ψ and vacuum I channels, after
fusion of γ2 and γ3 non-trivially (see [31] for more details).
At the final time t = T , the system has two MZMs (γ1 and
γ4) at the left and right edge of the chain (see Fig. 2b).

Now increasing the repulsive Coulomb interaction V leads
to asymmetrical spectral weight at ω = ±2t/τ as time
increases [see Figs. 2(j,k,l)]. For larger value of V , the cost
of adding an electron at site j = 6 (or j = 7) for state
|Ψ2⟩ is costlier than adding an electron to state |Ψ4⟩ (see also
the electron density for low-energy states in the SM). This
results in larger spectral weight at ω = −2t/τ compared to
ω = +2t/τ in the electron and hole parts of the local-density
of states LDj(ω, t).

In summary, we have found an equal spectral weight
for electron and hole components in the time-dependent
local density of states during the non-trivial fusion
process of Majoranas form different pairs. Interestingly
the time-evolving state becomes an almost equal-linear
superposition of two low-energy states, even for larger values
of τ . The formation of a similar magnitude of electron and
hole confirms the non-trivial nature of Majorana fermions.
The increase in Coulomb interaction leads to asymmetry in
the peaks close to ω = ±2t/τ .

(b) The case ϕ1 = π, and ϕ2 = 0
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FIG. 3. (a) Schematic representation of two pairs of MZMs [(γ1, γ2) and (γ3, γ4)]: at time t = 0 the left part has pairing coupling strength
−∆, while the right part has pairing coupling strength +∆. (b) Pictorial representation for the formation of a multi-site MZM (χ3) at time
t = T . (c) Time-dependent parity −⟨Pi,j(t)⟩ as a function of time t for different pairs of Majoranas and at V = 0.1. The electron and hole
components of the time-dependent local density of state LDe

j (t) and LD
h
j (t) at time t = 20 and for sites: (d) j = 5, (e) j = 6, and (f) j = 7.

The LD
e
j (t) and LD

h
j (t) at intermediate time t = 60 and for sites: (g) j = 5, (h) j = 6, and (i) j = 7. The LD

e
j (t) and LD

h
j (t) at the final

time t = T and for sites: (j) j = 5, (k) j = 6, and (l) j = 7.

In this sub-section, we will study the Majorana fusion in
a π-junction setup. In order to form a π-junction between
the right and left quantum-dot arrays, we consider two pairs
of MZMs, in this case with opposite signs of the pairing
terms (−∆ for the left array, and +∆ for the right array).
The MZMs in the left quantum-dots array has definite parity
P6,1 = −i⟨γ6γ1⟩ = −1 and the right pair has definite parity
P7,12 = −i⟨γ7γ12⟩ = −1 as well (see Fig. 3a). At t = 0
there are no hopping and pairing terms between the left and
right arrays.

Next, we turn on the time-dependent hopping (th) and
pairing ∆(t) terms (with zero phase factor as example)
between the left and right arrays, which effectively makes
a time-dependent π-junction quantum-dot array. In order to
observe the behavior of the central Majoranas γ2 and γ3,
we calculate the time-dependent electron LDe

j (t) and hole
LDh

j (t) portions of the local-density of state for sites j = 5, 6

and 7. At t = 0 the electron LDe
j (t) and hole LDh

j (t) portions
of the local-density of states shows equal height peaks at
ω = 0 for the sites j = 6 and 7, which indicate the presence
of two localized MZMs.

For the time t = 20, the LDe
j (t) and LDh

j (t) [see
Figs. 3(d,e,f)] shows small peaks at ω = 0 for site j = 5, and
larger peaks for sites j = 6 and j = 7 at ω = 0. Increasing

time to t = 60 [ Figs. 3(g,h,i)] the peak height of LDe
j (t) and

LDh
j (t) increase for site j = 5, remain constant for site j = 6,

and decrease for site j = 7. This spectral weight shift suggests
the tunneling of MZM Γ3 from site j = 7 to j = 5. Note that
the height of peaks at ω = 0, for the electron LDe

j (t) and hole
LDh

j (t) parts of the local-density of states are almost equal for
each site for all times t. We also find that the spectral weight
at ω = 0, mainly arises from the low-energy sub-space of
four-fold degenerate states. The equal-contribution of electron
and hole part of the local-density of states at ω = 0 for these
central sites, shows the presence of Majorana zero modes at
sites j = 5, 6, and 7.

At the final time t = T = 100, the LDe
j (t) and LDh

j (t)
have almost equal height peaks for sites j = 5 and j = 7
and the total spectral weights on these two sites is close
to localized on-site MZM, confirming the formation of the
multi-site MZM χ3 (see Fig. 3b). The LDe

j (t) and LDh
j (t)

for site j = 6 remain constant all up to time t = T . Thus,
the transfer of spectral weight from site j = 7 to j = 5 at
ω = 0, hints to a tunneling effect of half of the MZM γ3 from
site j = 7 to site j = 5, leading to formation of a multi-site
MZM χ3. This is a novel effect not reported before.

Interestingly, the low-energy four states remains
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degenerate, even after switching the time-dependent hopping
th(t) and pairing ∆(t) terms between the left and right
arrays, showing the presence of a total of four MZMs in the
system. We also find that the time-evolving wavefunction
|Ψ(t)⟩ = u|Ψ1⟩ + v|Ψ4⟩ becomes a superposition of two
low-energy degenerate ground states (with the same total
parity). The amplitudes u and v depend on the tunneling
of the MZM γ3 from site j = 7 to site j = 5 (for t = 20
|u|2 = 0.8 and |v|2 = 0.2). These amplitudes u and v
remain the same for different values of large τ . Furthermore,
to confirm the tunneling of MZM γ3, we also calculate
the time-dependent parity ⟨Pij(t)⟩ = −⟨Ψ(t)|γiγj |Ψ(t)⟩,
for different pairs of Majoranas. As shown in Fig. 3c, the
observable ⟨p6,1(t)⟩ remains constant with time, showing
that the MZM γ2 remains localized at site j = 6, without any
change in parity of the pair (γ1, γ2). Meanwhile, ⟨p7,12(t)⟩
starts decreasing and approach the value 1/

√
2, at time

t = T . On the other hand, ⟨p5,12(t)⟩ becomes non-zero as
time increases and approaches −1/

√
2. Once again, these

results suggest the formation of a multi-site MZM with form
χ3 = − 1√

2
γ5 +

1√
2
γ7, where one component of χ3 appears

due to tunneling of γ3 initially localized on site j = 7.
For the ground-state one-dimensional Kitaev-wire with

π-junction, there are a total of four MZMs. To understand the
behavior of the central MZMs, using just three central sites
(j = 5, 6, and 7), we can write the Hamiltonian for the central
region as (with ϕ1 = π and ϕ2 = 0 for the two central bonds
respectively):

HIII = −2i∆
(
γB
5 γB

6 + γA
7 γ

B
6

)
, (8)

where we used the relations c5 = 1√
2
e−iϕ1/2

(
γA
5 + iγB

5

)
,

c6 = 1√
2

(
γA
6 + iγB

6

)
, c7 = 1√

2
e−iϕ2/2

(
γA
7 + iγB

7

)
.

Interestingly, the Majorana operator γA
6 is absent in the

Hamiltonian, showing that γA
6 is a single-site MZM mode

at site 6. The form of the Hamiltonian also suggests
that one localized mode, γA

6 , does not interact with any
other Majorana zero mode, which could be the reason of
localization of the initial Majorana mode located at site j =

6. After diaogonalizing the Hamiltonian HIII , we find that
a multi-site MZM χ3 = − 1√

2
γ5 + 1√

2
γ7 resides at sites

j = 5 and j = 7 (see the SM of Ref [19] for a more
detail calculation). This ground state results indicate that out
of an initial total of four single-site MZMs, there are now
three single-site local MZMs (two localized at edge end sites
and one at central site j) and one multi-site MZM with form
χ3 = − 1√

2
γj +

1√
2
γj+2.

In summary, the Majoranas near the π-junction do not fuse.
Instead, one MZM remains a localized single-site MZM, and
another transforms into a multi-site MZM (located on two
sites with equal amplitude). The tunneling of half of the
second MZM through the centrally localized one-site MZM in
a strict one-dimensional geometry is interesting and certainly
a novel effect. This partial tunneling of a Majorana leads
to the time-evolving wavefunction in a superposition of two
low-energy degenerate states (with same total parity).

Non-trivial fusion of MZMs in Y -shape quantum dot
arrays

This section will study the fusion of three MZMs from
different pairs, further increasing the complexity of the
problem. The presence of multiple Majoranas can occur in
topological materials or in quantum circuits experiments. The
overlap between odd and even numbers of Majoranas can give
different behavior in the tunneling spectra [32]. Here, we
simulate the overlap between an odd number (three) of MZMs
as a function of time , starting with fully separated MZMs. We
consider a Y -shape geometry consisting of three quantum-dot
chains at the sweet spot and with the same superconducting
phase ϕ1 = ϕ2 = ϕ3 = 0 at each arm. At time t = 0, there is
no hopping and superconducting coupling between these three
quantum-dot arrays. As shown in Fig. 4a, the system has three
pairs of Majorana zero modes (γ1, γ2), (γ3, γ4), and (γ5, γ6),
with well-defined initial parities P12 = −i⟨γ1γ2⟩ = +1,
P34 = −i⟨γ3γ4⟩ = +1, and P56 = −i⟨γ5γ6⟩ = +1. The six
Majorana modes at the sweet-spot (th = ∆ = 1 and V = 0)
give rise to an eight-fold degenerate ground state, because we
can form three non-local spinless fermions (which give rise
to 23 = 8 fold degeneracy). Within an eight-fold degenerate
ground state, four states have individual total parity P = +1
and the remaining four have parity P = −1. Using the
four-degenerate ground state with fixed same parity one can
encode two topological qubits, which can display all the basic
operations for topological quantum computation [33].

The Hamiltonian for the Y -shaped quantum-dot array (with
ϕ1 = ϕ2 = ϕ3 = 0 at each arm) can be divided into four
different parts. The Hamiltonian for each arm can be written
as:

HI =

l−1∑
j=1

(
−thc

†
j cj+1 +∆cjcj+1 +H.c.

)
, (9)

HII =

2l−1∑
j=l+1

(
−thc

†
j cj+1 +∆cjcj+1 +H.c.

)
, (10)

HIII =

3l−1∑
j=2l+1

(
−thc

†
j cj+1 +∆cjcj+1 +H.c.

)
. (11)

Moreover, in order to fuse the MZMs from different
pairs, first we switch on the time-dependent pairing ∆(t)
and hopping th(t) terms between each arm. In practice,
we tune the time-dependent pairing and hopping terms as
∆(t) = th(t) = th(T )

nδt
τ between the central three MZMs

(γ2, γ3, γ5). We used τ = 100 and other parameters as
described in the previous cases. T is the final time such that
∆(t) = th(t) = 1 at t = T = 100. The time-dependent
Hamiltonian coupling the arm edges is written as:

HC(t) = −th(t)c
†
l cl+1 +∆(t)clcl+1 +H.c.

−th(t)c
†
l+1c2l+1 +∆(t)cl+1c2l+1 +H.c.

−th(t)c
†
l c2l+1 +∆(t)clc2l+1 +H.c.. (12)
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FIG. 4. (a) Schematic representation of three pairs of Majorana zero modes in a Y -shape Kitaev wire. At t = 0, each pair has fixed fermionic
parity P1,2 = +1, P3,4 = +1, and P5,6 = +1. The direction of the arrows denote the directions of the pairing terms ∆ and site index j in
each wire. (b) Pictorial representation of the formation of the multi-site MZM R3 after the fusion of the three central MZMs at time t = T ,
after the adiabatic process ends. The time-dependent electron LD

e
j (ω, t) and hole LD

h
j (ω, t) portions of the local-density of states at time

t = 20 and for sites (c) j = 4, (d) j = 5, (e) j = 9, and (f) j = 6. The LD
e
j (ω, t) and LD

h
j (ω, t) for the intermediate time t = 60 and for

sites (g) j = 4, (h) j = 5, (i) j = 9, and (j) j = 6. The LD
e
j (ω, t) and LD

h
j (ω, t) for the final time t = T and for sites (k) j = 4, (l) j = 5,

(m) j = 9, and (n) j = 6. These numerical calculations were performed using L = 12 sites and th = ∆ = 1, V = 0.1.

Using the above Hamiltonian H = HI + HII + HIII +

HC(t), we performed the time evolution starting from the
ground state with total parity P = +1, and calculated
the electron LDe

j (ω, t) and hole LDh
j (ω, t) portions of the

local-density of states for various times t. At t = 0, we
find that the central edge sites j = 4, 5, and 9 in LDe

j (ω, t)

and LDh
j (ω, t) have sharp peaks at ω = 0. Introducing

a time-dependent hopping and pairing term leads to the
simultaneous fusion of three central MZMs (γ2, γ3, γ5), the
three belonging to different original MZM pairs. The fusion
of central MZMs leads to a split in the initial eight-fold
degenerate ground state into two sets of low-energy four-fold
degenerate states.

As shown in Fig. 4c , the time-dependent electron
LDe

j (ω, t) and hole LDh
j (ω, t) portions of the local-density

of states at time t = 20, for site j = 4, shows peaks close
to ω = ± 3t

τ , indicating the formation of both electron and
hole for positive and negative frequencies. Using Eqs. 6 and
7, we find the spectral weights at ω = ± 3t

τ in the electron and
hole parts of LDj(ω, t) arise from the transition between the
splitted two-set of four-fold degenerate states [mainly (n = 2
to m = 6) or (n = 1 to m = 5)]. In fact, the time-evolving
state |Ψ(t)⟩ becomes a superposition of four states (two from
the lower four-fold degenerate part and rest two from the

other four-fold states of the eight-fold low-energy states) of
the instantaneous Hamiltonian.

At sites j = 5 and 9 [ Figs. 4(d,e)], the LDe
j (ω, t) and

LDh
j (ω, t), shows peaks at ω = 0 and also close to ω = ± 3t

τ ,
with equal spectral weight of the electron and hole portions of
the time-dependent local-density of states. These results for
the sites j = 5 and 9 show that the MZMs still survive for
these sites and in addition there is a formation of electron and
hole close to ω = ± 3t

τ due to the partial fusion of MZMs.
Interestingly, for site j = 6, a small peak appears at ω = 0.

For the intermediate time t = 60, the LDe
j (ω, t) and

LDh
j (ω, t) in the range of −1 ≤ ω ≤ 1, there is no peak

for site j = 4. On the other hand, for sites j = 5 and 9 the
peaks at ω = 0 decreases with time and for site j = 6 shows a
peak at ω = 0 and the peak strength increases with increasing
time t. These results show the transfer of spectral weight from
the central sites (j = 5 and 9) to the site j = 6. For the final
time after the adiabatic process, t = T , the LDe

j (ω, t) and
LDh

j (ω, t) show almost equal-height peaks at ω = 0 for the
three central sites j = 5, 9 and 6, see Figs. 4(l,m,n). These
results indicate the formation of equal amount of electron
and hole, and, surprisingly, just one multi-site MZM after the
fusion of three central MZMs ( Fig. 4b). In other words, we
unveiled the unexpected and novel result that the fusion of
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three one-site MZMs leads to a single MZM spread on three
sites.

In summary, in comparison to the fusion of two MZMs
(even numbers), the fusion of three MZMs (odd numbers) give
rise to a novel multi-site MZM. The local density of states
shows peaks at ω = 0 for three different central sites. Note
that the multi-site MZM position depend on the pairing terms’
direction. The appearance of a multi-site MZM near the
central part is mainly due to the different coupling directions
(effectively a π-junction) at the tri-junction (see Fig. 4b).

Discussion

In this publication, we studied the non-trivial fusion of
Majorana zero modes in canonical chains, as well as in
a Y-shape array of interacting quantum dots close to the
sweet spot in parameter space. We examined the real-time
dynamics of the local density-of-states to reveal the nature
of the non-trivial fusion of MZMs. The Majoranas were
initialized in pairs with definite parity in separate quantum-dot
arrays. Varying the time-dependent hopping and pairing
terms between the different quantum-dot arrays, we carry
out the fusion of Majoranas from different pairs (non-trivial
fusion). We observed the fusion outcomes by calculating the
time-dependent electron and hole part of the local-density of
states. Several unexpected results were unveiled:

(1) In the case of a one-dimensional chain with the same
phase on each left and right wire, we demonstrated the
formation of both electron and hole close to ω = ±2t/τ in
equal magnitude for small values of Coulomb interactions.
The formation of equal amount of electron and hole at each
ω = ±2t/τ value is a dynamical effect and reveals the
non-trivial nature of the MZMs fusion. In fact, we find that the
time-evolving states becomes an equal superposition of two
states (with the same parities). This non-equilibrium effect is
unique in case of the non-trivial fusion. For the trivial fusion
the time-evolving states overlaps with only one state of the
instantaneous Hamiltonian. For the first time, we explore the
effect of Coulomb interaction on the dynamics of non-trivial
fusion. The Coulomb interaction leads to asymmetry in the
peak height at ω = ±2t/τ , as adding an electron is costlier to
the low-energy state. Although it is gratifying to observe these
effects in actual many-body calculations, the equal mixture of
electron and hole in the outcome was intuitively expected.

(2) On the other hand, quite unexpected results were
found for the case of a π-junction (with opposite phase on
each left and right wire) because the Majoranas do not fuse
with one another. Instead they formed a multi-site MZM
residing on two sites near to an independent localized one-site
central MZM. The time-average parity and time-dependent
local-density of states reveals that the one-site MZM at
the edge (near the center) of the left array does not fuse
with other MZMs and remain localized on the same edge
site. Surprisingly, half the MZM of the right quantum-dot
array (near the center) tunnels through the localized one-site
MZM and forms a multi-site MZM. The tunneling of half
of the MZM even in a strict one-dimensional geometry is
a quite novel effect. The tunneling of MZM also makes

the time-evolving state become a superposition of two states
from the four-fold degenerate ground state manifold of the
instantaneous Hamiltonian even for smaller quench rate. The
amplitude of the two states in the time-evolving state depends
on the amount of tunnel MZM through the central localized
MZM.

(3) For the fusion of MZMs in a Y -shape quantum-dot
array, where the MZMs are coupled through time-dependent
hopping and pairing terms in a triangular geometry, we show
the formation of an exotic multi-site MZM after the fusion
of three central MZMs from different pairs. Interestingly,
the time-evolving state becomes a superposition of four
states of instantaneous Hamiltonian (two from the lower
four-fold degenerate and other two form higher four-fold
degenerate states), due to the non-trivial fusion and formation
of multi-site MZM. In general terms, the nature and behavior
of the central multi-sites MZMs are dependent on the
geometry and direction of the pairing terms of quantum-dot
arrays. The knowledge of the characteristics of the central
multi-sites MZMs is important for the braiding of MZMs
in dynamical and realistic settings, where the exchange of
MZMs is performed by moving the MZMs adiabatically. In
comparison to the previously studied MZM fusion in the
non-interacting single particle picture, here we do not find any
density fluctuations during the non-trivial fusion of MZMs
(in one-dimensional geometry), using the time-evolving
many-body wave-function. The formation of electron and
hole clearly appears in the electron and hole parts of the
time-dependent local-density of states. The local-density
of states can be measured in tunneling-spectroscopy in
quantum-dot experiments.

The study of non-trivial fusion is related to the non-Abelian
statistics and can be performed in the present quantum-dot
setups. The observation of fusion outcome should be more
accessible than performing braiding experiments. We believe
our novel findings of the non-trivial fusion of Majoranas
in the one-dimensional chain and Y -shape geometries
can be realized using the recently developed quantum-dot
setups. Our prediction of the fusion outcome, based on the
time-dependent local density-of-state method, is accessible to
the present-day experimental capability [6].

Methods
In order to calculate the time-dependent local
density-of-states, we use the exact-diagonalization
method [20]. First, we time evolve the initial wave function
|Ψ(0)⟩ up to time t, using the time-dependent Hamiltonian
H(t) as: |Ψ(t)⟩ = T exp

(
−i
∫ t

0
H(s)ds

)
|Ψ(0)⟩, where

T is the time ordering operator [34]. Next, we calculate
the double-time Green function G(t, t′) [35], using the
instantaneous Hamiltonian Hf = H(t = tf ) at time t = tf :

Gelec
j (t, t′) = ⟨Ψ(t)|c†jeiHf t

′

cje
−iHf t

′

|Ψ(t)⟩. (13)

The time-dependent LDe
j (ω, t) for the electronic part of the

local-density of state is the Fourier transform of the local
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Green function at site j with respect to t′:

LDe
j (ω, t) =

1

π
Im

∫ T

0

dt′ei(ω+iη)t
′

iGelec
j (t, t′), (14)

where we use T = 60 for the integration. The
broadening parameter was fixed to η = 0.1 in the
entire publication. Similarly, the hole part LDh

j (ω, t) of
the local density-of-states has been calculated using the
Fourier transform of the Green function Ghole

j (t, t′) =

⟨Ψ(t)|cj(t′)c†j |Ψ(t)⟩. The total local density-of-states at site j
can be written as LDj(ω, t) = LDh

j (ω, t) + LDe
j (ω, t) [20].
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