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We calculate the dynamical spin structure factor of the generalized spin-1/2 compass spin chain using the
density matrix renormalization group. The model, also known as the twisted Kitaev spin chain, was recently
proposed to be relevant for the description of the spin chain compound CoNb,Og. It features bond-dependent
interactions and interpolates between an Ising chain and a one-dimensional variant of Kitaev’s honeycomb
spin model. The structure factor, in turn, is found to interpolate from gapped and nondispersive in the Ising
limit to gapless with nontrivial continua in the Kitaev limit. In particular, the component of the structure factor
perpendicular to the Ising directions changes abruptly at the Kitaev point into a dispersionless continuum due
to the emergence of an extensive ground-state degeneracy. We show this continuum is consistent with analytical
Jordan-Wigner results. We also discuss implications for future inelastic scattering experiments and applications

to materials, particularly CoNb,Og.
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I. INTRODUCTION

Orbital physics in Mott insulators can lead to a wide range
of important phenomena [1-5] including dimensionality re-
duction [5], orbital-selective Mott phases [6-8], and, in the
presence of spin-orbit coupling, bond-dependent magnetic
exchange interactions [1,3,9]. The latter feature dramatically
in compass models [3], with Ising interactions along specific
spin-space directions depending on the spatial bond direction.
A famous example is Kitaev’s honeycomb spin model [10],
which realizes a quantum spin liquid ground state. Its possible
material realizations have been the subject of intense research
recently [11-13].

Another intriguing example is the 1D quantum compass
model (QCM) with alternating S7S},, and S}, S}, , interac-
tions for different bonds along the chain direction [14,15],
which provides an exactly solvable model presenting a quan-
tum multicritical point [16,17] in extended models. The QCM
can be viewed as arising from orbital order in systems of
weakly interacting zigzag chains [18], or simply as a 1D ver-
sion of Kitaev’s honeycomb model: a Kitaev spin chain. Chain
and ladder versions of the Kitaev honeycomb model and
its extensions (including, e.g., Heisenberg and off-diagonal
Gamma interactions) have been studied theoretically [19—42],
mostly for their tractability and potential realizations in engi-
neered chains [43]. It was also proposed that charge order in
K-intercalated RuCl; may lead to effective Kitaev-Heisenberg
chains [23,25], but a different charge order was found in
experiments [44].

Given the above information, zigzag chains appear to be
the most promising way towards such 1D Kitaev-like models
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in materials. Due to the variability of bond angles and lattice
distortions, it is natural to consider a generalized compass
model (GCM) [18,45],

L/2—1
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H=-K § : (0 i1 + T Do) 6]
i=0

where ti"’ =1, - 1; is the projection of the pseudospin Pauli
operator vector on site i onto the bond-dependent Ising di-
rection #;. Using a coordinate system where the two axes
n; and 7, lie in a plane, we allow the angle 26 between 7,
and 71, to vary continuously. At & = 0, 7 /2 the Ising chain is
recovered, while 8 = 7 /4 yields the QCM [46], which was
solved in the seventies as a special case of the alternating
XY model [47]. The interpolation between Ising and Kitaev
spin chains motivated Morris et al. [45] to introduce “twisted
Kitaev spin chain” as an alternate name for the GCM away
from these limits. They also proposed the Hamiltonian (1) as
a description of long-distance properties in the zigzag chain
material CoNb,Og¢ [45], which is commonly considered the
best-known realization of the ferromagnetic (FM) transverse-
field spin-1/2 Ising chain due to its observed field-induced
criticality [48-52]. The description as a pure FM Ising chain
is, however, insufficient to explain the zero-field behavior, the
description of which motivates considering bond-dependent
interactions [45,53]. What would originate such interactions
in CoNb,Og? Their Co>* ions are surrounded by oxygen
octahedral cages and form zigzag chains along the ¢ axis; see
Fig. 1. Hund’s coupling favors a high-spin d’ configuration
(tfgeg,), which may be viewed as a S = 3/2, L = 1 state. Spin-
orbit coupling then splits the energy levels further, resulting
in a pseudospin-1/2 ground-state Kramers doublet, just as in
proposals for Kitaev physics in honeycomb cobaltate systems
[54,55]. Although CoNb,Og is not a honeycomb system, its
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FIG. 1. Zigzag chain in CoNb,Og featuring a two-site unit cell
with lattice constant c along the chain direction. The lattice symmetry
allows for different interactions between spins along the two distinct
bonds. Similar bond-dependent interactions may emerge also in other
zigzag chain systems with specific electron configurations.

symmetry permits identification of two alternating Ising di-
rections [45]. Distortion of the octahedra splits the energy
levels further, but the ground-state Kramers doublet remains
[56]. We note that the GCM, Eq. (1), is general and not
restricted to materials such as CoNb,Og. It may also emerge
in d°, high-spin d*, and low-spin d’ configurations, where
the e, orbital degree of freedom replaces the Kramers doublet
degree of freedom [18]. Further potential applications include
Co zigzag chains on surfaces [57] and quantum simulation in
optical lattices [58,59].

Since Eq. (1) and variations of the model are exactly
solvable using Jordan-Wigner fermions [60,61], many proper-
ties have been studied. These include ground-state properties
[14,15,18,62—67], thermodynamic properties [18,68,69], and
aspects of quantum quench dynamics [70-72]. Numerical re-
sults were also reported in Refs. [17,64,73] using Lanczos
exact diagonalization and Ref. [69] using matrix product state
methods. However, to the best of our knowledge, the full dy-
namical spin structure factor S(k, @) has not yet been studied
except in the Ising limit, although time-dependent results for
the spin dynamics of the QCM were obtained analytically for
spin components in the plane spanned by 7 and 71, L 71 [74]
and for spin components transverse to the same plane [75,76].
The goal of the present paper is thus to study the frequency-
dependent dynamics at zero temperature and as function of the
angle 6.

Using the density matrix renormalization group (DMRG)
[77,78] we obtain all components of S(k, @) as a function of
the angle 6. The spectra interpolate from gapped and nondis-
persive at the Ising points towards a gapless continuum as
the Kitaev point is approached, with gapped and dispersive
behavior in-between. There are abrupt qualitative changes in
the spectra at the Kitaev point, related to an underlying macro-
scopic degeneracy. In particular, the transverse component
8§ (k, w) becomes gapless and dispersionless in the Kitaev
limit. These spectral features are understood via the Jordan-
Wigner ground-state solution. Our S(k, @) results can help the
design and interpretation of future experiments employing,
for example, inelastic neutron scattering (INS) or resonant
inelastic x-ray scattering (RIXS) techniques.

The paper is organized as follows. Section II introduces
global coordinate systems for Eq. (1) to interrelate the con-
ventions of Refs. [18,45]. We review relevant Jordan-Wigner

results in Sec. III and describe the numerical methods in
Sec. IV. We present our results in Sec. V, discuss their
consequences and summarize the conclusions in Sec. VI. A
derivation of the dispersionless continuum at the Kitaev point
is provided in the Appendix.

II. COORDINATE SYSTEMS

For concreteness, we first consider the application of
Eq. (1) to CoNb,Og. The crystal structure features zigzag
chains along the crystallographic ¢ axis as shown in Fig. 1, in
which the two Ising directions are constrained by symmetry
to be related by a twofold rotation symmetry about b, Cé’.
Following Morris et al. [45] we use a global xyz coordinate
system where two Ising directions 71, 71, define the xz plane.
This is done by choosing X parallel with the b axis, and Z such
that it bisects the angle 26 & 34° between #1; and i, and is
at an angle ¢ ~ 31° to the ¢ axis. The first Ising axis can be
taken as 11 = (sin 8, 0, cos 8), with 7, fixed by Cé’ symmetry.

Substituting the #; into Eq. (1), transforming to
pseudospin-1/2 operators S¢ = 7/ /2 and defining K =4K
one obtains

H =—K Z [0052 (0)S3S%,, + sin” (0)S;S5,

sin (20)
+ 2

(/{8557 + 57850 | @

as in Ref. [45]. In the absence of magnetic fields there is a
twofold ground-state degeneracy due to invariance under spin
rotations around ¥ by . We call this the Ising-like coordinate
system because the Ising nature of the Hamiltonian is manifest
at 0 = 0, r /2. However, since the bond alternation is in the
symmetric off-diagonal (or I') terms, the Kitaev nature at 7 /4
is obscured,

O=m /4 K X OX
H, M= ) Z 7851+ SiSEn

+ (= D(SIS7 + 5755 G)

The connection to Kitaev or compass physics becomes
clearer by canonically transforming to an alternate coordinate
system (x'y'z") by a 7 /4 counterclockwise rotation around —3.
In this Kitaev-like coordinate system the bond alternation is
moved to the Ising terms,

K i - X qx’
= =5 (11— Vsl

+ 11+ (—1) sin(20)]87 57,
— cos(29)[5flsf;1 + 55/554/-1]}’ “)

making the Kitaev nature manifest at 8 = m /4. The drawback
is that the Ising nature at 6 = 0, 7 /2 is now obscured, where
the Hamiltonian takes the form of an X’Y’ model with a I in-
teraction term. We will report our spin dynamics results in the
Ising-like coordinate system, both because of its established
connection to experimentally relevant systems and because
the rotation to the Kitaev-like coordinate system generically
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induces off-diagonal Y/ (k, w) correlations, which can be
significant.

Finally, to connect with prior Jordan-Wigner analyses of
the GCM it is convenient to apply a 7 /2 spin rotation about £,

A e N &)
to Eq. (2), yielding

Hy = — KZ [sin2 (0)8;85, | + cos® 0)88],,
sin (20)
2

In the following we will use H3 in the discussion of the
Jordan-Wigner solution, but present spin dynamics results
in the coordinate system of H;. This approach gives both a
concrete connection to CoNb,Og and similar systems, and
increased numerical efficiency from working with real-valued
Hamiltonians.

IS +5755)| ©®

III. JORDAN-WIGNER SOLUTION

We review here aspects of the exact solution of the model
in the Jordan-Wigner formalism [60,61], following mainly
Refs. [18,70]. Introducing the standard transformation

i—1

SF=38+i8 =clexp |im ) cle;|. (7
j=1
i—1
Sy =38 —iS =exp| —in Y _cle; | (®)
j=1
§=clei— 9
P=ciciT S 9

Eq. (6) is recast in terms of spinless

where {c;, cl} =8,

fermions,

L
Hy = — K [c]eisr +Hel
i=1
L)2
+ K Z[c;c;ﬂe_izg + c;HcgiHeize + H.c.], (10)
i=1

where L is the length of the chain, L/2 is the number of
unit cells, and H.c. denotes Hermitian conjugate. We adopt
a periodic Fourier convention with

2 - 2 y
Crjy = \/;Ze'kjak, ) = \/;Ze’k/bk, (11)
k k

and momenta given by

o GGG
k=—— n=—|--1),—(=z-3),....|=—1).
L 2 2 2

12)

Following the Fourier transform, Eq. (10) is rewritten in a
symmetrized Bogoliubov-de Gennes form

! ; (gt t
H = 3 Xk: T h(Ty,  Tf = (a),ax, bj,by), (13)

where
0 0 Ax P+ Ok
hik) = f?; —(P,:O— o) _(Pko_ k) _64k
P+ O; —A7 0 0
(14)
and
A= —K(1+¢€"), (15)

P, = Kcos(20)(1 — €*), O = iK sin(20)(1 + €*). (16)

Unitary diagonalization of Eq. (14) yields a spectrum sym-
metric around zero, with energies {%¢; ,}, n = 1, 2 given by

€1 =\ Ce —vVDi, €2 =1/Cc+ Dy,
where

Cr = |Ac)* + |Pe]* + |Ok* = 4K*[1 + cos(k) sin®(20)]

a7

(18)
and
Dy = (AfP + AP — (A QO — AkQp) + (PL Ok + PO}’
(19)
s 2(k\ .o
= 16K cos (z) sin” (20)
X [3 + cos (40) + 2 cos (k) sin® (20)]. (20)

€r,1 and €, are called the acoustic and optical branches,
respectively, in analogy with phonon terminology. Positive
energy states represent physical excitations, while negative
energy states stem from the redundancy in the description and
are filled in the ground state, which has energy

1
Ey = —3 ; (ex,1 + €x2). 2D

This function is plotted in black in Fig. 2(a).

Some important observations follow directly from the
eigenvalues (17). First of all, the energies are independent of
the sign of K. Second, since €, | < €2 Vk, 6 the excitation
gap is given by A(6) = 2 miny € 1(6), which generically has
extrema at k = 0,7 and is plotted in Fig. 2(b). We note
that the gap A(0) is best understood as the physical en-
ergy gap in the thermodynamic limit, i.e., the gap between a
spontaneously Z,-symmetry-broken ground state and the first
excited state above it. At finite system size, analysis of the gap
in the Jordan-Wigner formalism requires careful treatment of
boundary conditions and Bologiubov vacua [14], which is
outside the scope of the current paper. In numerical calcula-
tions on finite-size systems the physical gap may be identified
via A, = E, — Ey, where E, is the nth lowest eigenvalue and
multiplicity is taken into account.

In the Ising limits at 6 =0, w/2, the excitations
are gapped, doubly degenerate and nondispersive, with
€1 = €2 =2|K| (Dy =0, C; = 4K?). At the Kitaev point
€10 =m/4) =0 Vk, meaning that the excitations are
nondispersive and gapless. The acoustic +€;; branch thus
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FIG. 2. (a) Ground-state energy in units where |K| = 1. The
black line is the Jordan-Wigner result in the thermodynamic limit
with periodic boundary conditions. The other curves represent
DMRG results for finite FM systems with open boundary conditions.
Antiferromagnetic (AFM) K yields the same energy. (b) Excitation
gap in the thermodynamic limit from the Jordan-Wigner solution.

becomes degenerate with the —e; ; branch, which leads to a
macroscopic degeneracy [18], and i(k) becomes singular. As
shown below, this degeneracy results in anomalous behavior
at the Kitaev point. Away from the Ising and Kitaev limits, the
excitations are dispersive and gapped.

IV. NUMERICAL METHODS

We performed zero-temperature two-site DMRG [77,78]
calculations using the DMRG+H++ software [79] and open
boundary conditions (OBC). The dynamical spin struc-
ture components S (k, w) were calculated in the Krylov
correction-vector approach [80-82], which works directly in
frequency space and allows constant frequency resolution.
The center-site approximation was employed, and elastic delta
function peaks in S¥(k, w = 0) due to static order away from
the Kitaev point were removed by subtracting the ground-state
magnetization from the center-site operator; see the Supple-
mental Material for details [83]. Since this procedure relies
on a well-defined expectation value (S%) # O it is reliable
only for a nondegenerate ground state. Thus, for0 < 6 < /4
[r/4 <0 <7 /2] S¥(k, w) [S*(k, ®)] was computed in the
presence of a small uniform (staggered) symmetry-breaking
magnetic pinning field of magnitude 10~°K along  [£] for FM
(AFM) K, compatible with the static correlations; see Sec. V.

Our main results (i.e., spectra) were obtained with L = 64
sites, keeping up to mmax = 1920 states in the calculations. A
Lorentzian broadening of n = 0.1K and a frequency step of
Aw = 0.025K were also used. Truncation errors below 101°
were targeted, which was easily achieved in practice (since
most calculations used substantially fewer states than allowed
by mmax ), except in the vicinity of the QCM, where the largest
single truncation error was instead on the order of 1076. We
note that we obtained very similar results for the QCM also
for a lower value mp,x = 1280, albeit with a larger truncation

0 /8 /4 3r/8 /2

FIG. 3. Nearest-neighbor static spin-spin correlation functions
for (a) K > Oand (b) K < 0. All datais for L = 64 and m,, = 1280.

error. Overall, calculations at the critical point dominated
the computational effort; see the Supplemental Material [83],
which also provides additional details for reproducing the
numerical results.

We use a two-site unit cell as in Fig. 1 and designate
momenta in units of the crystallographic lattice constant 1/c.
The momenta are labeled k, = 27rn/N,n=0,1,...,N — 1,
where N = L/2 is the number of unit cells. This effectively
amounts to treating the system as if it were periodic, which
introduces a minor error that vanishes in the thermodynamic
limit. We use a Fourier transform convention that accounts for
the position within the unit cell, which is taken to be 0 for even
sites and ¢/2 for odd sites. We note, however, that due a glide
symmetry of Eq. (2) (composed of translation by ¢ = ¢/2 and
a spin flip) the resulting spin structure factors are insensitive to
the unit-cell doubling and show periodicity by 27 /¢ = 47 /c
[53]. As such, the results can readily be reinterpreted for a
single-site unit cell by scaling k.

V. RESULTS

Figure 2(a) shows the ground-state energy from DMRG
and from the continuum limit of Eq. (21). The numerical
results indicate quick convergence towards the exact result
with system size L. For 6 away from 6. = 7 /4 very large
system sizes can be reached. Figure 3 shows static ground-
state nearest-neighbor correlation functions from the DMRG
calculations (with zero pinning fields). Four sites at each end
of the chain were neglected to minimize boundary effects,
such that the nearest-neighbor correlations were averaged over
the interior L — 2 x 4 — 1 bonds. In both the FM [Fig. 3(a)]
and AFM [Fig. 3(b)] cases the system is characterized by
large |(S§S§+1)| for 0 <6 < 7/4 and large |(S7S7,,)| for
m/4 <6 < /2, reflecting the change of the easy axis. At

104414-4



SPIN DYNAMICS OF THE GENERALIZED QUANTUM SPIN ...

PHYSICAL REVIEW B 107, 104414 (2023)

S (k,w) (arb. units)

g (d) 6=7/16

\
| (e)
|
\
| (b)
|
|
| (k)
i
*6 (m) =7 /6 E‘OM} (n)

[6) (p) 6=37/16

} )
| (t)
|
o r
ld (v) 6=m/4 QCM } (w)

.0 05 1.0 1.5

00 05 10 1.5 00 05 1.0 1.5 2.0
kin (27 /c)

FIG. 4. Dynamical spin structure factor for the 1D FM GCM
for different values of 6. Red stars indicate notable special cases:
[(@)—(c)] The FM Ising chain, where spin waves are nondispersive
and the inelastic weight is concentrated in transverse scattering.
[(g)—(@)] Results for 6 ~ 17°, which Ref. [45] proposed is relevant
to CoNb,Os. [(m)—(0)] Spectra for the FM e,-orbital model (EOM),
and [(v)—(x)] spectra for the Kitaev spin chain or QCM. Energies
are given in units of |K|. Other panels show spectra for intermediate
values of 6. As 6 increases from 0°, the excitations become dispersive
and the spin gap gradually decreases until it closes at 6 = 45°, where
the nature of the scattering changes. All results shown were obtained
for L = 64 sites and OBC. Elastic §-function peaks in §%(k, w) were
removed for 6 < 7 /4; see Sec. IV.

the Kitaev point all correlation functions decrease, associated
with a disordered state, as previously discussed in Ref. [18].

Figure 4 shows the diagonal components of the dynamical
spin structure factor for ferromagnetic K > 0 and various
values of the angle 0 < 6 < 7 in the Ising-like coordinate
system. We use units in which |K| = 1. The range includes
the Ising and Kitaev limits at the ends of the interval, as
wellas 6 = 37 /32 ~ 17°and 6 = 7 /6 = 30°, corresponding
to proposed values for CoNb,Og [45] and the FM e,-orbital
model [18], respectively. Spectra for the range 7 <6 < 7
are related to those shown by the substitution 6 — 7 /2 — 0,
X <z

At 6 = 0 in Figs. 4(a)-4(c), we have a FM z-Ising chain
with gapped, nondispersive excitations. In this limit the
ground state has the form cy M1 ...) +c [l ...), so
S¥(k, w) o< §(k)5(w) becomes trivial. As discussed in Sec. IV
this elastic peak was subtracted from the plotted spectrum.
The true inelastic scattering is contained purely in the trans-
verse components. These probe the energy related to domain
walls, which have energy 4|K]|.

For 0 < 6 < m /4 the presence of additional terms in the
Hamiltonian induces domain wall motion [45], which trans-
lates into dispersive excitations and scattering continua in the
transverse components. This simple physical picture is famil-
iar from FM XY and XXZ chains, but also holds here in the
presence of a site-alternating I term. Initially, as in Figs. 4(d)
and 4(e), the S™(k,w) and S$¥(k, ®) components appear
fairly symmetric, both in their bow-tie-like shape and spec-
tral distribution, which has most weight near w = 4|K| and
k = 2w /c. However, as 0 is increased, the spectral weight in
S*(k, w) is redistributed towards the I" point; see Figs. 4(m),
4(p), and 4(s). At the same time, the delta-function peak in
S$%(k, w) becomes less dominant and some dispersive inelastic
scattering becomes visible in Figs. 4(0), 4(r), and 4(u). As
60 — 1 /4 the spin excitations become gapless as predicted by
the Jordan-Wigner solution, with significant weight at = 0
in $%(k, w) and S%(k, w), while $*(k, w) becomes more
diffuse and completely flat with a concentration of spectral
weight along the top of the spectrum; see Fig. 4(w).

This highly unusual dispersionless scattering feature ap-
pears very suddenly at the critical point. To see just how
abruptly the spectra change we consider additional values of 6
close to 6, in Fig. 5. The qualitative form of $*Y(k, w) is sym-
metric around 6 = 7 /4, and unchanged in the 287 /128 <
0 < 31w /128 range, yet suddenly changes at the gap closing
point. Given the abruptness, one may be tempted to ask if
the spectrum in Fig. 4(w) or Fig. 5(k) is correct. We stress
that, although the Kitaev point is the most computationally
challenging, this spectrum is not a simple numerical artifact.
Instead, the anomalous behavior is linked directly to the exten-
sive ground-state degeneracy and restructuring of the Hilbert
space seen in the Jordan-Wigner solution. From the analytical
results of Perk er al. [75] for time-dependent correlations
we have obtained the structure of $”(k,w) at 0 = /4. It
features a k-independent continuum for 0 < w < 4|K| with
divergent intensity towards the top of the spectrum, in agree-
ment with the numerical result. See the Appendix for details
of the derivation. We also note that, although the system at
0 = m /4 is referred to as a Kitaev spin chain, the behavior in
the isotropic Kitaev honeycomb model is markedly different.
That model realizes a quantum spin liquid with gapless Ma-
jorana excitations, yet remarkably its spin excitation spectrum
remains gapped [84]. The gap is related to an emergent static
gauge field [84], which is absent in the chain [85].

The antiferromagnetic case in Fig. 6 shows the same be-
havior in the transverse $*”(k, ) component; however, the
S™(k, w) and S¥(k, w) components are modified compared
to the FM case. This is due to a canonical transformation
where spins on one sublattice (e.g., even sites) are rotated by
m around ¥, taking H; — —H,. For the dynamics it implies
a 2w /c shift in k for S§¥/%2(k, ) between the FM and AFM
cases. The most apparent consequence is the shift of spectral
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FIG. 5. Dynamical spin structure factor for the 1D FM GCM
for different values of 6 close to the Kitaev limit 6 = /4 [pan-
els (j)-(1), marked with the red star]. Although the S™(k, w) and
S$%(k, w) change reasonably smoothly across the critical point, there
is a sudden change in the $*Y(k, @) component. All results shown
were obtained for L = 64 sites and OBC. Elastic §-function peaks in
S¥/%(k, w) were removed for 6 # 1 /4; see Sec. IV.

weight in S¥(k, w) from k = 0 to k = 27 /c, reflecting Néel
correlations. Its origin is also clear from the AFM state in the
Ising limit, c4 [ty 1 ...) +c Y ... ), yielding $%(k, )
8(k — 2w /c)6(w). As other terms are introduced in the Hamil-
tonian, a continuum develops in the transverse components,
reminiscent of the AFM XXZ chain [86]. A qualitative dif-
ference compared to the FM case is that the bow-tie-like
shapes of $*(k, w) for low 6 are replaced by more rounded
shapes [compare, for example, Fig. 4(g) and Fig. 6(g)], which
follows from the 27 /c shift. Essentially, both shapes can be
understood as emerging from the dispersionless excitations in
the Ising limit by gradually shifting spectral intensity towards
k = 0ork = 27 /c with increasing 6. Interestingly, in both the
FM and AFM cases, the Ising limit scattering leaves strong
imprints on the spectra at finite 6, whose k = 27 /cand k = 0
excitations, respectively, retain their energy scale.

VI. DISCUSSION AND CONCLUSION

The lack of U(1) symmetry around the easy axis in Eq. (2)
implies generally that the two transverse components of the

S (k,w) (arb. units)

w

(m) f=7/6 EOM

w

NEOODONEIONEREDIONEREDIONEDDONEROON

(p) 0=3r/16

w

(s) 6=Tr/32

w

-
(v) 6=r/4 QCM

w X

.0 05 1.0 15 00 05 1.0 1.5 0.0 05 1.0 1.5 2.0
k in (27 /c)

FIG. 6. Spectra for the 1D AFM GCM for different values of 6.
Red stars indicate the AFM Ising chain [(a)—(c)], the AFM e,-orbital
model [(m)—(0)], and the AFM QCM [(v)—(x)]. Other panels show
spectra for intermediate values of 6. All results shown were obtained
for L = 64 sites and OBC. Elastic §-function peaks in S (k, w) were
removed for 6 < 7 /4; see Sec. IV.

dynamical spin structure factor will differ. This is seen in
Figs. 4, and 6 for 6 large enough, where S (k, w) # S (k, w).
In the ferromagnetic case and for low 6, however, S* (k, w) ~
S (k, w) is a good approximation. We note that this assump-
tion was made in the analysis of inelastic neutron scattering
data on CoNb,Og in Ref. [48]. For 8 = 37 /32 [see Figs. 4(g)
and 4(h)] we find that $”(k, w) has a ~15% higher peak
intensity than S™(k, w), but essentially the same integrated
spectral weight. Given that Figs. 4(g) and 4(h) also indicate an
approximately symmetric distribution of the spectral weight,
we conclude that the assumption is justified also under the
Hamiltonian parameters proposed in Ref. [45]. However, for
systems approximately described by Eq. (2) at higher 6 or
AFM K < 0, spin-polarization-resolved spectroscopic experi-
ments would be preferable and provide important information
about the bond directionality of interactions.

In systems of weakly-coupled Ising chains the interchain
effects can be incorporated through an effective longitudinal
magnetic field that becomes nonzero in the ordered phase
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[48,87]. According to the proposal of Ref. [45], long-distance
properties of CoNb,Og, such as the THz spectrum, can be
well described by H = Hy — h; ), S} with K = 0.57 meV
and i, = 0.04 meV. However, we have found this model in-
sufficient to reproduce short-distance features seen in the INS
data of Ref. [48], in particular it fails to reproduce the up-
wards curvature of the dispersion at k = 27 /c. More realistic
spin models for this material feature additional interactions,
notably including a second-nearest neighbor AFM Ising in-
teraction [48,50,53], which appears to be necessary for a full
description of the material in the entire Brillouin zone.

Beyond CoNb,0Og, we note that bond-dependent interac-
tions are inherently related to the geometry of electron orbitals
and hopping paths. This means that, except in fine-tuned sys-
tems, one generally expects that additional symmetry-allowed
spin interaction terms may be present, much like is seen
in the honeycomb Kitaev candidates [88]. In materials with
well-separated chains, the impact of such terms can likely be
tuned or minimized using pressure or strain. Some such terms
could potentially also help stabilize the region of the disor-
dered phase of the QCM, which otherwise occupies a singular
point in the phase diagram. The interchain coupling itself
can have important effects on, e.g., magnetic order. However,
as long as it is weak it often does not significantly modify
the high-energy spin dynamics, which can remain effectively
one-dimensional above some cut-off frequency. Thus, there is
hope of realizing a proximate 1D QCM, and more generally
chain systems with substantial bond-dependent interactions.

Here, we have studied the dynamical spin structure factor
of the spin-1/2 generalized compass chain, as a function of
the angle between the local Ising directions. We find smooth
changes in the components in the plane spanned by the Ising
directions, but a sudden change in the perpendicular com-
ponent at the Kitaev point. This is one of several anomalies
that stem from the closing of the excitation gap and the
development of an extensive ground-state degeneracy. Our
results can help guide the interpretation and design of spectro-
scopic experiments on materials with similar bond-dependent
interactions. Future work may extend the analysis to chains
with additional symmetry-allowed interactions, ladder models
[89], or chains in the presence of magnetic fields in which ad-
ditional quantum phase transitions and also interesting soliton
physics have been reported [42].
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APPENDIX: DISPERSIONLESS CONTINUUM
AT THE KITAEV POINT

Perk et al. [75] studied time-dependent correlations in the
inhomogeneous one-dimensional XY model with alternating
interactions,

L
H=2) [188,, +785,,]. (A1)
i=1
where
i =Je Ly =J and By =00, By =03 (A2)

The subscripts e and o denote even and odd, respectively.
Here we have written the Hamiltonian in terms of § operators
to indicate the same coordinate system as was used in Hs,
Eq. (6). In the Kitaev limit, § = /4 in Eq. (6), and

(A3)

in Eq. (A1), we identify K = —2J. At this isolated param-
eter point we can make use of the analytical results for
the real-space and real-time dependent correlation function
(Sf (t )S’f (0)) or the intermediate scattering function Ik, 1)
in Egs. (4.20) and (4.26) of Ref. [75]. Due to the transforma-
tion (5), these correlations are equivalent to yy correlations in
the Ising-like coordinate system of H; in Eq. (2).

Taking the Kitaev and zero-temperature limits, one finds
their Eq. (4.26) simplifies substantially to

2
Pl = — f dgexp [—iA(p)1], (A4)
81 0
where
Ai(9) = V21J1y/1 = cos (29). (A5)

Note that there is no k dependence in this limit. Next, the
Fourier transform to frequency space yields

1 [~ .
Pk, w) o 2—/ dee I (k, 1)
b4

—0oQ

1 2 0
= —/ dgo/ dt exp [it(w — 2|J||sin ¢])]
167'[2 0 —o0

2
= do 8(w —2|J|[sin @)
8w 0

‘l b
= —/ de é(w —2|J|sing), (A6)
47 0

where the § function produces a continuum. The last step in
Eq. (A6) makes its argument continuously differentiable in
@ such that the composition property of the § function can
be used. There are three different cases: (i) w < 0 or w >
2|71, (ii) 0 < w < 2|J|, and (iii) @ = 2|J|. In the trivial case
(i) the function g(¢) = w — 2|J|sin ¢ has no roots, making
S(k, w) vanish. In case (ii) there are two roots in the interval
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[0, 7],

| = sin~! 2 , =7 —sin”! 2 . (A7)
v 1) ¢ 2171

Both roots leave g'(¢,) # 0, making S(k, w) finite throughout
the entire frequency range. Finally, in case (iii) there is only

one unique root, ¢3 = 7 /2. Since g (7 /2) = 0 it follows that
S(k, w = 2|J|) diverges. This is consistent with what we ob-
serve numerically in Figs. 4(w) and 6(w), where the intensity
is found to be concentrated along the top edge of the spectrum,
with a weaker dispersionless continuum below it. The lack of
a sharp divergence at w = 2|J| = 4|K| in the numerical result
is due to the Lorentzian frequency broadening.
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