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Ab initio and continuum model studies predicted that the � valley transition metal dichalcogenide (TMD)
homobilayers could simulate the conventional multiorbital Hubbard model on the moiré honeycomb lattice.
Here, we perform the Wannierization starting from the continuum model and show that a more general moiré
Kanamori-Hubbard model emerges, beyond the extensively studied standard multiorbital Hubbard model, which
can be used to investigate the many-body physics in the � valley TMD homobilayers. Using the unrestricted
Hartree-Fock and Lanczos techniques, we study these half-filled multiorbital moiré bands. By constructing the
phase diagrams we predict the presence of an antiferromagnetic state and in addition we found unexpected
and dominant states, such as a S = 1 ferromagnetic insulator and a charge density wave state. Our theoretical
predictions made using this model can be tested in future experiments on the � valley TMD homobilayers.

DOI: 10.1103/PhysRevB.107.L201118

Introduction. Transition metal dichalgenide (TMD) moiré
materials provide unprecedented platforms to study the effect
of electronic correlations on flat moiré bands [1–5]. A variety
of low-energy Hamiltonians can be realized in these TMD
moiré materials [6]. For example, the WSe2/WS2 hetero-
bilayer simulates the one-orbital triangular lattice Hubbard
model [7–10], while the AB-stacked MoTe2/WSe2 leads to
nontrivial moiré bands demonstrating quantum anomalous
Hall effect [11]. In addition, recent ab initio and contin-
uum model calculations have shown that twisted �-valley
homobilayers, such as MoS2, MoSe2, and WS2, produce two
valence moiré bands with Dirac cone mimicking a honey-
comb lattice, while the next set of lower energy four moiré
bands simulates the two-orbital asymmetric px-py honey-
comb lattice model [12–16]. Moreover, surprisingly in recent
ARPES experiments �-valley moiré bands have been ob-
served in the twisted WSe2 [17,18], rendering it also a
candidate material to realize the two-orbital honeycomb lat-
tice model. These findings opens up an exciting avenue to
simulate multiorbital Hubbard-like models in TMD moiré
materials.

The Kanamori-Hubbard (KH) model [19,20] has been
extensively studied for many conventional materials where
multiple orbitals are active, as in iron based superconduc-
tors, iridates, manganites, etc. [20–24]. The moiré potential
is shallower than the ionic potential present in conventional
materials, leading to relatively broader Wannier functions in
moiré materials and making nonlocal correlations important
[25], which are typically ignored in the often used KH model.
This suggests that the theoretical studies of twisted �-valley
homobilayers require a model going beyond the standard KH
model. In this publication, for the first time we provide a moiré
Kanamori-Hubbard (mKH) model which includes nonlocal
correlations, where the interaction parameters are calculated
using the well-localized and accurate Wannier functions of
the twisted MoS2 bilayer [27–29]. The importance of the
mKH model is depicted by discussing the effective dielectric

constant ε vs the twist angle θ phase diagrams for the
half-filled mKH model, unveiling surprising results which
definitely cannot be captured by the standard KH model. It
is interesting to note that the relevance of the nonlocal cor-
relations in the flat moiré bands of twisted bilayer graphene
(TBG) has also been discussed [30–33], so we believe the
mKH model can also be used for TBG, but only near magic
angles [34–37] unlike in TMD bilayers where the flat bands
are present in a larger range of twist angles.

Wannierization and tight-binding model. We calculate the
moiré bands structure and the Bloch states using the contin-
uum moiré Hamiltonian H = −h̄k2/2m∗ + �(r). The moiré
potential �(r) is defined as �(r) = ∑

s

∑6
j=1 Vse

i(gs
j .r+φs ),

where gs
j are the moiré reciprocal lattice vectors connecting to

sth nearest neighbor. The model parameters {Vs, φs} are fixed
following earlier studies [12], considering the MoS2 homo-
bilayer, so that the band structure obtained from continuum
model and ab initio matches very well. All of our predictions
are also valid for other � valley homobilayers like MoSe2

and WS2. The valence bands closest to the chemical potential
can be described by a one-orbital tight-binding model on a
honeycomb lattice, see [12,13]. Here, we focus on the second
set of four composite valence bands, which can be described
by a two-orbital px-py tight-binding model on the honeycomb
lattice. Until now, the Wannier functions have not been calcu-
lated for these set of bands. We perform Wannierization, using
a projection technique [38,39], to obtain four well-localized
Wannier functions, two on each sublattice, namely A and B,
see Fig. 1(k) (for details see the Supplemental Material [40]).
The calculated Wannier fuctions have nodes at the moiré sites
and a pair of lobes like in the p orbitals of the hydrogen atom,
as shown in Figs. 1(c)–1(f) and Figs. 1(g)–1(j) for twist angles
1◦ and 2.5◦, respectively. We noticed that �A(B)px (r) cannot
be obtained by a 90◦ rotation of �A(B)py (r) unlike in the ideal
px-py orbitals, which follows from the absence of full rota-
tional symmetry in the moiré potential. Moreover, we found
�Bpx(y) (r) = −�Apx(y) (−r) due to the inversion symmetry of
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FIG. 1. (a), (b) Comparison between independently calculated band structures using the continuum model and the tight-binding model
(TBM), for the twist angles (a) θ = 1◦ and (b) θ = 2.5◦. Wannier functions, calculated using the continuum model Bloch wavefunctions,
for twist angles θ = 1◦ and θ = 2.5◦ are shown in panels (c)–(f) and (g)–(j), respectively. (k) The honeycomb lattice geometry used in the
tight-binding model. The blue, green, and red arrows depicts the nearest, second-nearest, and third-nearest neighbor hoppings, respectively. (l)
Evolution of the dominant hopping parameters with the twist angle.

the moiré potential on two sublattices given by �(r − RA) =
�(−r − RB).

Using the above Wannier functions, we calculated the hop-
ping parameters for the two-orbital tight-binding model on
the honeycomb lattice, up to the third nearest-neighbor us-
ing t SS′

j−i (μ, ν) = 〈�j
Sμ|H |� i

S′ν〉 (for details see Supplemental
Material [40]), where the {i, j}, {S, S′}, and {μ, ν} indices de-
notes unitcell, sublattice, and orbitals (px or py), respectively.
We write the kinetic energy as HK.E. = ∑

iσ K1
iσ + K2

iσ + K3
iσ ,

where the terms Kn
iσ consists of hoppings between the nth

nearest neighbor sites in the honeycomb lattice. The hopping
connections up to the third nearest-neighbor are pictorially
shown in Fig. 1(k). K1

iσ is presented below:

K1
iσ =

∑
ν,μ∈{px,py}

r∈{0,−a2,a1−a2}

tBA
r (μ, ν)c†

i+rBμσ
ciAνσ + H.c. (1)

The K2(3)
iσ terms can be written similarly, as shown in

the Supplemental Material [40]. The first nearest-neighbor
hopping term K1

iσ , shown in Eq. (1), depends on three 2 × 2
matrices, namely {tBA

0 , tBA
−a2

, tBA
a1−a2

}. Similarly, six 2 × 2 matri-
ces {tAA

a1
, tAA

−a2
, tAA

a1−a2
, tBB

a1
, tBB

−a2
, tBB

a1−a2
} and three 2 × 2 matrices

{tAB
a1

, tBA
a1

, tBA
a1−2a2

} are required for the second and third nearest-
neighbor hoppings, respectively. All of these 12 matrices
are dependent on θ . We found a good match between the
band-structure calculated using the above tight-binding model
and the continuum model, as shown in Figs. 1(a) and 1(b),
suggesting that we have accurate Wannier functions. We no-
ticed that for θ � 1.2, only nearest-neighbor hoppings are
enough to obtain the correct bandstructure, as shown in
Fig. 1(a) for θ = 1.0. However, for larger θ longer-range hop-
pings are required to reproduce the continuum model results

[see Fig. 1(b), for θ = 2.5]. We show the evolution of the
some dominant hopping parameters in Fig. 1(l), depicting the
exponential fast growth of hoppings with θ .

Interaction parameters and moiré Kanamori-Hubbard
model. Now we will derive the Coulomb interaction between
the fermions in the Wannier states discussed above. The
generic interaction term can be written as

HInt = 1/2
∑

i,j,k,l,
α,β,γ ,δ,

σ,σ ′

V αβγ δ

ijkl c†
iασ c†

jβσ ′clδσ ′ckγ σ , (2)

where V αβγ δ

ijkl = 〈� i
α�

j
β |V |�k

γ � l
δ〉 and V = e2/ε|r1 − r2|. ε is

produced by the surrounding dielectric environment, such as
nearby h-BN layers. The exact value of ε is not known so we
keep it as a free parameter. The {α, β, γ , δ} indices represent
the sublattice S and the orbital μ via α = 2S + μ = Sμ, where
the sublattice A(B) = 0(1) and the orbital px(py) = 0(1).

In the present work, for simplicity, we limit the nonlocal
Coulomb interactions only up to nearest-neighbor sites of
the honeycomb lattice. A priori, the longer range interactions
are not expected to be very relevant at and near half-filling
[41]. To study Wigner crystals at fractional fillings, the ap-
proximate longer range interactions can be easily included
by assuming the ( 1

|r| − 1√
r2+d2 ) functional form, where d

is the screening length [42–44]. The Coulomb interaction
term which includes up to nearest-neighbour interactions can
be divided into three parts, HInt = ∑

i Hi + HAB
i,i-a2

+ HAB
i,i+a1-a2

,
where i is the unit cell index and a(1,2) are the Bravais lattice
vectors. The first part Hi consists of all the Coulomb inter-
actions possible within the unit cell i, including both local
and nearest-neighbor interactions given by V αβγ δ

iiii (total 44

terms). The second HAB
i,i-a2

and third parts HAB
i,i+a1-a2

contain
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the Coulomb interactions between the nearest-neighbor sites
belonging to different unit cells. Now we will discuss the Hi
term in detail; the other two terms are very similar and shown
in the Supplemental Material. Hi is shown in Eq. (3), where
Siα = 1

2

∑
s,s′ c†

iαsτss′ciαs′ represent the spin at unit cell i, or-
bital μ = mod(α, 2), and sublattice = (α − μ)/2. The pair
annhilation operator is defined as Piα = ciα↓ciα↑. s = 1(−1)
for σ =↑ (↓), and the set S = {{0123}, {0132}, {0213}}.

Hi =U0

∑
α

niα↑niα↓ +
∑
α<β

(
Uαβ − Jαβ

2

)
niαniβ

− 2
∑
α<β

JαβSiα · Siβ +
∑
α<β

Jαβ (P†
iαPiβ + H.c.)

+ 1/2
∑

σ,σ ′,α �=β �=γ

(Aβαγ − δσσ ′ J̃βαγ )(c†
iασ ciγ σ niβ,σ ′ + H.c.)

+
∑

σ,α �=β

Ãαβ (c†
iασ

ciβσ niβσ̄ + H.c.)

−
∑

α �=β �=γ

J̃αγβ (S+
iαc†

iβ↓ciγ↑ + H.c.)

+ 1/2
∑

σ,α �=β �=γ

J̃αγβs(P†
iαciγ σ̄ ciβσ + H.c.)

+
∑
σ,σ ′,

{αβγ δ}∈S

Tαβγ δ (c†
iασ ciγ σ (c†

iβσ ′ciδσ ′ + c†
iδσ ′ciβσ ′ ) + H.c.).

(3)

Equation (3) encompasses all 44 intraunit cell interaction
terms. The first four terms look similar to the conventional
multiorbital Hubbard model, but here they capture the nonlo-
cal interactions as well.

The first term is the standard onsite intraorbital Hubbard
repulsion, where U0 = V αααα

iiii (same for all α’s). The sec-
ond term incorporates the onsite interorbital density-density
repulsions via parameters {U01, U23, J01, J23} and the non-
local orbital resolved repulsions via parameters like U02, J02,
etc., where Uαβ = V αβαβ

iiii and Jαβ = V αββα

iiii . The well known
local Hund’s coupling is present in the third term via the
dominant J01 and J23 parameters; this term also includes
the nonlocal ferromagnetic direct exchange terms (J02, J13,
J03, J12). The fourth term incorporate the onsite interorbital
and nonlocal pair hopping terms. We also found interaction
assisted hoppings (termfive and termsix), spin-flip hoppings
accompanied with local spin flip (termseven), and scatter-
ing of doublon to different states (termeight) quantified by
(Aβαγ , Ãαβ , J̃βαγ ). The remaining interactions are present in
term nine.

We show the interaction parameters of the first six terms
as a function of θ in Fig. 2. The density-density terms are
dominant interactions, see Fig. 2(a). The onsite intraorbital
repulsion (U0) suggests that εU0/W can be of order of 10 to
1000 in real materials, depending on θ , where W is the non-
interacting bandwidth. For example, U0/W is about 1200ε−1

and 25ε−1 for θ = 1◦ and θ = 2.5◦, respectively. The local
Hund’s coupling and the nonlocal ferromagnetic direct ex-
change is shown in Fig. 2(b). Figures 2(c) and 2(d) display the
interaction assisted hoppings vs θ . The rest of the interaction

(a)

(b)

(c)

(d)

(m
eV
)

(m
eV
)

(m
eV
)

(e
V
)

FIG. 2. (a) The onsite intraorbital Hubbard repulsion U0, onsite
interorbital Hubbard repulsion U01, and the orbital resolved nearest-
neighbor Hubbard repulsion parameters {U02,U03,U13} shown for
various twist angle θ values. (b) The onsite Hund’s coupling J01

and the orbital resolved nearest neighbor direct-exchange parameters
{J02, J03, J13} as a function of θ . (c), (d) Evolution of nearest-neighbor
interaction assisted hoppings with θ , requiring electron pair in the
sameorbital (c) or on the samesite (d). ε is the effective dielectric
constant.

parameters are relatively smaller, and shown in the Supple-
mental Material. We call the total Hamiltonian H = HK.E. +
HInt the moiré Kanamori-Hubbard model because of the pres-
ence of nonlocal interaction terms, which are ignored in the
standard KH model. These nonlocal correlations can lead to
unexpected results, as shown in the next section. It should be
noted that the mKH model shown here has larger scope and
can also be used for magic-angle TBG and future moiré ma-
terials addressing multiorbital physics on honeycomb lattice
(only the values of hopping and interaction parameters will
depend on the specific material).

L201118-3



NITIN KAUSHAL AND ELBIO DAGOTTO PHYSICAL REVIEW B 107, L201118 (2023)

FIG. 3. (a), (b) Effective dielectric constant ε vs twist angle θ

phase diagrams for (a) the full moiré Kanamori-Hubbard (mKH)
model and (b) the simplified mKH model, both constructed via
unrestricted Hartree-Fock. Panels (c), (d), and (e) show the picto-
rial representation of ferromagnetic (FM), antiferromagnetic (AFM),
and charge density wave (CDW) states, respectively. The tiny violet
regions in (b) correspond to noncollinear and noncoplanar phases.

In recent theoretical work [25], a one-orbital Hubbard
model with nonlocal interactions was derived for TMD heter-
obilayers. As discussed before, in our work we instead derive
a multi-orbital Hubbard model, focusing on homobilayers.
We found similar nonlocal interactions terms as discussed
in [25], such as density-density repulsion, ferromagnetic di-
rect exchange, interaction-assisted hopping, and pairhopping.
However, in addition we also found spin-flip hoppings as-
sisted by local spinflip, and doublon scattering to different
sites. Moreover, the orbital degree of freedom in our model
may lead to phenomena unique of multiorbital models, such
as orbital ordering [26], local Hund’s coupling driven double-
exchange mechanisms [20], etc.

Numerical results at half-filling. We create ε vs θ phase
diagrams to investigate the physics of the mKH model at half-
filling n = N/L = 2, where N is the total number of fermions
and L = L1 × L2 the total number of unit cells. We studied
6 × 6 and 12 × 12 system sizes using the unrestricted Hartree-
Fock technique. We choose a broad range of ε ∈ [1, 80] as it
can be tuned by changing the distance with the nearby metallic
gate. Moreover, ε will be enhanced by the charge fluctuations
between the moiré bands considered here and other remote
moiré bands. The ε vs θ phase diagram for the mKH model is
shown in Fig. 3(a). In addition to the expected antiferromag-
netic (AFM) state, we have unveiled two states not anticipated

(a) (b)

(c)

(e)

(d)

(f)

FIG. 4. (a) Effective dielectric constant ε vs twist angle θ phase
diagram for the simplified mKH model by solving the small 2 × 2
cluster using the Lanczos technique. The 2 × 2 honeycomb cluster
with periodic boundary conditions is shown in (b); the dashed thin
lines depicts the underlying triangular Bravais lattice. (c), (e) The
spin-spin correlation with respect to site=1 (〈S1 · S j〉) for various
values of ε, at fixed (c) θ = 1.5 and (e) θ = 2.0. (d) The local
moment 〈S2

L〉 for θ = 1.5 and 2.5 vs. ε. (f) The density-density
correlation with respect to site=1 (N1 j) for various values of ε, at
fixed θ = 2.0.

to be stable in the conventional multiorbital model: the S = 1
ferromagnetic (FM) state for θ < 1.75 and the charge density
wave (CDW) state for θ � 1.75. The nonlocal density-density
repulsion plays the key role to stabilize the CDW state. We
can estimate the nearest-neighbor density-density repulsion to
onsite intraorbital repulsion ratio. For example, U02/U0 lies
approximately in the range [0.20,0.35] for the homobilayer
we considered, whereas for heterobilayer the nearest-neighbor
density repulsion to onsite Hubbard repulsion ratio lies in
[0.12,0.25] [25]. Although our estimates are in a similar range,
the half-filled heterobilayer does not show the CDW state
[25], whereas our multiorbital mKH model shows CDW in a
large region of the phase diagram. This can be understood by
the approximate CDW stability condition for our model which
incorporates multiple orbitals and enhances the effect of non-
local correlations, i.e., 2(U01 + U0) < 3(U02 + U03 + U12 +
U13) which is satisfied for θ � 1.75. The competition between
the nonlocal FM direct exchange (∝ ε−1(J02 + J13 + 2J03))
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and the AFM superexchange (∝ (εt2)/(U0 + J01)) leads to
the transition from the FM to AFM state as ε increases. We
found that the AFM state is present only for ε > 20 with local
moment S < 1. See Figs. 3(c), 3(d), and 3(e) for the pictorial
representation of the FM, AFM, and CDW states.

We also used the simplified mKH model, only keeping
the first four terms in Eq. (3), and found all three phases
are present nearly in the same region of the phase diagram
[see Fig. 3(b)], suggesting that the FM direct exchange and
the density-density repulsion are the most important nonlocal
interactions for the half-filled mKH model.

To investigate the effect of the quantum fluctuations, we
used the Lanczos technique and studied a small 2 × 2 cluster
with periodic boundary conditions [Fig. 4(b)], using the sim-
plified mKH model. The phase diagram is shown in Fig. 4(a).
We again found the FM, AFM, and CDW states in the same
region of the phase diagram. Figure 4(c) shows the spin-spin
correlation, with respect to site=1, 〈S1 · S j〉 for θ = 1.5◦,
depicting strong FM correlations for ε = 10, and AFM cor-
relations for ε ∈ {30, 50, 80}. Figures 4(e) and 4(f) show 〈S1 ·
S j〉 and density-density correlations N1 j = 〈n1n j〉 − 〈n1〉〈n j〉,
respectively, at fixed θ = 2.0 depicting the growth of AFM
correlations and suppression in the CDW as ε increases. This
indicates a smooth transition from the CDW phase to the
AFM phase. We believe larger systems are required to confirm
whether it is a second-order phase transition or a crossover.
The FM to AFM or the FM to CDW are first order transi-
tions because the total spin suddenly changes from 2L = 8
to 0. The averaged local moment S2

L = (1/4L)
∑

iα〈S2
iα〉 as a

function of ε is shown in Fig. 4(d). We found, for θ < 1.75,

that S2
L decreases as ε is increased while the system transits

from the S=1 FM to AFM phases, whereas for θ � 1.75,

S2
L grows with ε developing AFM correlations with weak

CDW.
We have focused only on half-filling but investigating

other fillings would also be valuable, because including
longer-range interactions will likely lead to rich and novel
multiorbital phase diagrams at fractional fillings [45–47]. Our
model provides a unique platform to explore the interplay
between multiorbital interactions and nonlocal correlations.
Deriving the low energy S=1 model for half-filling [48] and
the t − J model for theoretical studies near half-filling can
also be interesting future directions, as the TMD moiré ma-
terials are generally located in the strong coupling regime.

Conclusions. We showed that the twisted �-valley TMD
bilayers contains physics beyond the conventional multior-
bital Hubbard model. We provide a mKH model which can be
used to theoretically study the multiorbital physics of TMD
bilayers. Using our numerical studies at half-filled moiré
bands we show that the nonlocal direct-exchange terms and
density-density interactions can lead to S=1 FM insulators
and CDW states, respectively, depending on ε and θ . The
AFM state can also be obtained but at large ε > 20. Our
theoretical prediction of a S=1 FM insulator can be verified
by measuring the magnetic susceptibility and Weiss constant
in real materials [7,49], and the charge ordered state can be ob-
served using high-resolution scanning tunneling experiments
[50]. The mKH model can also be used for further theoretical
investigations like doping near half-filled correlated insulators
and for studying Mott-Wigner crystals at fractional fillings by
including longer range density-density interactions.
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