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Spectroscopy experiments are routinely used to characterize the behavior of strongly correlated systems. An
in-depth understanding of the different spectral features is thus essential. Here, we show that the spectrum of
the multiorbital Hubbard model exhibits unique Hund bands that occur at energies given only by the Hund
coupling JH, as distinct from the Hubbard satellites following the interaction U . We focus on experimentally
relevant single-particle and optical spectra that we calculate for a model related to iron chalcogenide ladders. The
calculations are performed via the density-matrix renormalization group and Lanczos methods. The generality
of the implications is verified by considering a generic multiorbital model within dynamical mean-field theory.
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Introduction. Strongly correlated systems are at the heart of
modern condensed matter physics. The celebrated single-band
Hubbard model, describing (doped) Mott insulators, is still ex-
tensively studied in the context of Cu-based high-temperature
superconductivity [1–3]. An equally exciting case is that of
iron-based superconductors where the presence of several ac-
tive orbitals leads to novel effects beyond the “standard” Mott
physics [4–6]. A nontrivial example is the orbital-selective
Mott phase (OSMP) [5,7–10], where Mott-localized and itin-
erant electrons coexist.

A key probe of electronic excitations is the single-particle
spectral function A(k, ω), characterizing the excitations’ dis-
persion. It is experimentally accessible by angle-resolved
photoemission spectroscopy (ARPES) [11,12]. To understand
the origin of different spectral features, it is convenient to
consider idealized models that can be studied theoretically and
monitor how the signatures of correlations (e.g., the Hubbard
bands) evolve with increasing Coulomb interaction U . This is
especially true for quantum systems of reduced dimensional-
ity, for which quasiexact numerical methods [13,14], or even
closed analytical solutions [15], provide unbiased informa-
tion on the elementary excitations. However, even in reduced
dimensionality obtaining accurate results for the multiorbital
Hubbard model remains challenging. The difficulty lies in the
exceptionally large Hilbert space. Because of that, the spectral
functions are often calculated using the dynamical mean-field
theory (DMFT) [16–19]. This approach, which strictly applies
at large dimensionality, avoids the finite-size limitation, but
often relies on solvers in Matsubara frequencies and hence the
resulting spectral functions are blurred due to analytical con-
tinuation (see Ref. [20], which discusses this and introduces a
method to alleviate the problem).

In this Letter, we numerically investigate the spectral
functions of several multiorbital models. Our main result
is summarized in Fig. 1(a). The electronic spectrum of a

single-orbital model (without the Hund coupling JH → 0)
consists of the usual upper and lower Hubbard bands (UHB
and LHB, respectively) that develop with U . In multiorbital
systems, the finite JH gives rise to additional excitations. Some
of these states can appear at energies between UHB and LHB
that depend exclusively on JH (i.e., are independent of U ),
paving the way to measure JH directly. Since such excitations
occur due to the Hund coupling and have a robust dispersion
[see Figs. 1(b) and 1(c) and Ref. [21] for the full spectrum
of A(k, ω)], we call them Hund bands. We recognize that the
Hund bands arise whenever single-particle removal/addition
processes yield a higher multiplet of the dominant valence
subspace. This can occur provided (i) the higher multiplets
exist, (ii) these multiplets are allowed by the selection rules
upon adding/removing a particle, and (iii) the charge fluc-
tuations are significant. All these requirements are met for
Hund’s metals. Earlier work documented multiplet splittings
in the Hubbard bands [20,31,32], in the fully occupied orbital
[33], found additional “holon-doublon” peaks [34–39], and
analyzed the energy-level structure, revealing multiplets that
violate the Hund’s rules [40]. Here, we stress that charge
excitations independent of U are a generic consequence of
the multiorbital systems.

To reach these conclusions, we use the density-matrix
renormalization group method (DMRG) [41–46] and Lanc-
zos diagonalization [2,47]. To show that our findings are
generic, we study both the two- and three-orbital Hub-
bard model. Furthermore, we supplement our analysis with
the effective model of the OSMP—the generalized Kondo-
Heisenberg Hamiltonian. Finally, we confirm our findings
with DMFT calculations. Our results apply to many ex-
periments investigating the spectral properties of multior-
bital materials, particularly iron-based compounds [48,49],
ruthenates [33,50–52], iridates [53,54], and nickel oxides
[55–59].
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FIG. 1. (a) Sketch of the Hund band accompanying the standard Hubbard bands. (b), (c) Orbital- and momentum-resolved spectral function
Aγ (k, ω) in the two-orbital Hubbard model for n = 2.5, U/W = 1.3, JH/U = 0.25, L = 48 sites, and orbitals (b) γ = 2 and (c) γ = 1.
The horizontal line marks the chemical potential μ. (d) Orbital-resolved density of states Aγ (ω). Points depict the corresponding effective
generalized Kondo-Heisenberg model (gKH); see the text for details. The arrow points at the Hund band in the itinerant orbital. Results
obtained with DMRG using broadening η = 0.04.

Model. We focus on the SU(2)-symmetric multiorbital
Hubbard-Kanamori chain,

HH = −
∑

γ γ ′�σ

tγ γ ′ (c†
γ �σ cγ ′�+1σ + H.c.) +

∑

γ �

�γ nγ �

+ U
∑

γ �

nγ �↑nγ �↓ + (U − 5JH/2)
∑

γ<γ ′,�

nγ �nγ ′�

− 2JH

∑

γ<γ ′,�

Sγ � · Sγ ′� + JH

∑

γ<γ ′,�

(P†
γ �Pγ ′� + H.c.). (1)

Here, c†
γ �σ creates an electron with spin σ at orbital γ of site

�. tγ γ ′ is the symmetric hopping matrix in orbital space. �γ

denotes the crystal-field splitting. nγ � = ∑
σ nγ �σ represents

the total density of electrons. U is the standard repulsive Hub-
bard interaction. JH is the Hund coupling between spins Sγ � at
different orbitals γ . The last term P†

γ �Pγ ′� denotes interorbital

pair hopping, Pγ � = cγ �↑cγ �↓. We assume open boundary con-
ditions, as required by DMRG. For the two-orbital model, γ ∈
{1, 2}, we used (in eV) t11 = −0.5, t22 = −0.15, t12 = t21 =
0, �1 = 0, �2 = 0.8; whereas for the three-orbital model:
γ ∈ {0, 1, 2}, t00 = t11 = −0.5, t22 = −0.15, t02 = t12 = 0.1,
t01 = 0, �0 = −0.1, �1 = 0, �2 = 0.8. These values were
previously used to study the iron-based ladders of the 123
family [9,10,60–63]. The bandwidth of the two-orbital model,
W = 2.1, is used as the energy unit [64]. All energy labels
given throughout the text are independent of the JH/U ratio.

We also study the minimal model of the OSMP: The gen-
eralized Kondo-Heisenberg model (gKH). This model was
derived [10,62,63] to capture the static and dynamic prop-
erties of BaFe2Se3 iron-based ladder [65–67]. It describes
interacting itinerant electrons (with spin si) coupled via Hund
coupling to the localized spins Sl,

HK = − ti
∑

�σ

(c†
�σ c�+1σ + H.c.) + U

∑

�

n�↑n�↓

+ K
∑

�

Sl� · Sl�+1 − 2JH

∑

�

si� · Sl�. (2)

For the gKH model, ti = −0.5, K = 4t2
l /U , tl = −0.15,

matching the OSMP of our two-orbital Hubbard model [10].
Hund bands. Let us study the orbital-resolved

single-particle spectral function Aγ (k, ω) and the density
of states (DOS) Aγ (ω) ∝ ∑

σ (〈〈c†
γ ,L/2,σ ; cγ ,L/2,σ 〉〉h

ω +
〈〈cγ ,L/2,σ ; c†

γ ,L/2,σ 〉〉e
ω ) [21]. Here, k is the momentum, ω

the energy, and 〈〈. . . 〉〉h,e
ω represent the hole and electron

components.
The origin of the Hund bands can be clearly illustrated

in an OSMP system. Figures 1(b)–1(d) present data for the
two-orbital Hubbard model (2oH) at electron filling n = 2.5
and interaction U 
 W . Clearly, the narrow orbital γ = 2
[Fig. 1(b)] has a gap at the Fermi level μ, while the orbital
γ = 1 [Fig. 1(c)] is metallic with a finite DOS at μ (or a
narrow pseudogap-like feature originating in the magnetic
order [68]). This behavior is consistent with the OSMP [10];
the narrow orbital is Mott localized with the electron density
equal to 1. However, instead of two excitation bands (UHB
and LHB), expected from the Mott physics, we observe a
prominent three-peak structure [see also the DOS in Fig. 1(d)].
This structure is also visible in the itinerant orbital (γ = 1),
Fig. 1(c), with an electron density equal to 1.5. Note that the
itinerant orbital’s spectrum is accurately reproduced by the
effective gKH model.

Let us take a closer look at how the three-peak spectrum
develops with the interaction U . Figure 2(a) shows A1(ω) for
the gKH model at noninteger filling n = 1.5. In the U → 0
limit, we recover the noninteracting behavior: A single metal-
lic band. However, already at U/W 
 0.8, i.e., close to the
OSMP transition [9,10], the three-peak structure is visible
in A1(ω), and becomes clearer the larger the interaction U
becomes. Since the three-peak structure is most pronounced
for U � W , it is instructive to examine the atomic limit
U, JH → ∞ of the gKH model; see Fig. 2(b). The atom real-
izes the noninteger filling n = 1.5 provided the ground states
(gs) of the 1- and 2-electron subspaces are degenerate, which
is achieved at μ = U + JH/2. Then, the gs consists of a local
interorbital triplet, denoted as |T〉, which is degenerate with
an itinerant doublon with localized spin, denoted as |D〉. By
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FIG. 2. (a) Interaction U dependence of the itinerant orbital’s
density of states (DOS) A1(ω) obtained for the gKH model with L =
48 sites, JH/U = 0.25, and n = 1.5. Results obtained with DMRG
using η = 0.04 broadening. The solid lines represent the atomic-
limit transitions. Inset depicts the results for half electron filling
n = 1. (b) Atomic excitation spectrum. For clarity, we mark only
the hole-like (electron removal) excitations and show only one spin
projection. D, T, S, H labels stand for doublon, triplet, singlet, and
holon, respectively. (c)–(e) DOS A1(ω) projected on the specific final
configurations: (c) parallel spins, (d) antiparallel spins, and (e) on
the holon; see the text for details. Results obtained with Lanczos
diagonalization of L = 8 lattice with broadening η = 0.05.

removing an electron from the triplet, one creates a holon
in the itinerant orbital (|T〉 → |H〉), with the cost of energy
U + JH. Interestingly, from the doubly occupied state, one can
remove an electron in two different ways. Depending on the
spin projection of the removed electron, one can arrive at a
local triplet or singlet, |D〉 → |T〉 or |D〉 → |S〉, respectively.
The former is a zero-energy transition between degenerate
states of the gs, while the latter costs an energy 2JH as it breaks
the Hund’s rule. In Fig. 2(a), we plot the relevant energy scales
of the atomic limit (U + JH and 2JH) and find good agreement
with the full many-body calculations of the gKH chain.

Projections on the atomic configurations. To make a
stronger case for the atomic-limit interpretation of the three-
peak spectrum, we decompose the spectral function of the
full many-body calculation into individual transitions [38].
To this end, we use the projector P onto specific con-
figurations of the on-site Ising basis |γ = 1, γ = 2〉, i.e.,
〈〈c†

γ ,L/2,σ ;Pcγ ,L/2,σ 〉〉h
ω [21]. For clarity, we discuss only

the hole part (below μ), as the electron part can be de-
scribed analogously. Upon removing an electron from the
itinerant orbital, we distinguish three contributions. (i) In

Fig. 2(c), we project onto the parallel-spin configuration,
P = |↑,↑〉〈↑,↑| + |↓,↓〉〈↓,↓|. The resulting weight forms
a band of excitations close to the Fermi level ω 
 μ. This
transition is responsible for the metallic properties of the
lattice. (ii) In Fig. 2(d), we instead project onto the antiparallel
configuration, P = |↑,↓〉〈↑,↓| + |↓,↑〉〈↓,↑|. We observe
large weight in the middle band and some smaller weight
at ω 
 μ. The middle band represents the interorbital singlet
which breaks the Hund’s rule: This is the 2JH Hund excitation.
The band at ω 
 μ represents the Sz = 0 component of the
triplet (|↑,↓〉 + |↓,↑〉), costing zero energy to excite. (iii)
Finally, in Fig. 2(e), we project onto the holon configuration,
P = |0,↑〉〈0,↑| + |0,↓〉〈0,↓|. This gives the energetically
lowest band of excitations, which we recognize as the LHB,
arising from triplet to holon transitions. The starting state
needs to be a triplet because singlets are excluded from the
gs by the Hund’s rule.

Noninteger vs integer filling. As shown above, for nonin-
teger filling (doped system), the atomic limit is enough to
explain the Hund bands. When the atomic gs of adjacent
particle-number subspaces, say N and N − 1, are degenerate,
there is no cost U for the transition from the gs of subspace N
to the gs of subspace N − 1. The excitation cost is zero; it is
compensated by μ which is tuned to cause the degeneracy.
However, if the N − 1 subspace contains not only the gs
but also higher multiplets, these multiplets can be accessed
in the photoemission process N → N − 1 with just the en-
ergy ∝ JH. Analogous reasoning applies to inverse transitions
N − 1 → N . Thus, remarkably, this results in U -independent
Hund bands.

Consider now this behavior in a more general system,
hosting more atomic configurations with different n. In Fig. 3
we present the three-orbital Hubbard model (3oH) results [69]
for various electron fillings. For n = 4.5, the atomic limit of
our setup [21] predicts one Hund excitation (between states
with 5 and 4 electrons) with energy 2JH [70], along with sev-
eral U -dependent Hubbard excitations. We pinpoint the Hund
band using the projector analysis, shown in Fig. 3(b). We
differentiate transitions arriving at |↑↓,↑,↑〉 and |↑↓,↓,↑〉.
Similarly, for the n = 3.5 filling, the atomic limit implies
Hund bands in photoemission at 3JH and 5JH. They are shown
in Fig. 3(c). The 3JH band is a transition to a low-spin S = 1/2
state [P onto |↑,↓,↑〉; see Fig. 3(a)]. The 5JH band originates
in states of the form |↑↓, 0,↑〉 ± |0,↑↓,↑〉, where “−” is
degenerate with the 3JH excitation while “+” forms the 5JH

peak. The latter are the holon-doublon states [34–39]. Their
origin was discussed in [34,36] but without realizing they are
a particular example of the generic physics of Hund bands
revealed here. Surprisingly, the 2JH band persists even for
n = 3.5 (as implied by the smaller but nonvanishing weight of
|↑↓,↓,↑〉), inducing a third Hund peak, absent in the atomic
spectrum. The intensity of this mode decreases with U .

By contrast, for integer filling n ∈ {1, 2, 3, . . .}, the atomic
limit alone does not predict the Hund bands. The atom lacks
the necessary charge fluctuations as its gs does not span ad-
jacent particle-number subspaces. Thus, only the “standard”
Hubbard bands should be observed [5,71]. However, in the
lattice, the charge fluctuations are possible provided the inter-
action U is not too large at a given filling n. For half filling,
the fluctuations vanish already for U ∼ W and the Hubbard
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FIG. 3. (a) Sketch of the transitions to final configurations that
contribute to the Hund bands of the three-orbital Hubbard model
(3oH). For clarity, we present only the representative configurations
(while the results are summed over several configurations of the same
type). The labeling of the arrows follows Fig. 2. (b)–(d) DOS A1(ω)
of the itinerant orbital (γ = 1) of 3oH with JH/U = 0.25. Left panels
depict A1(ω) as function of the interaction U , while right panels
show detailed spectra with projections for U/W = 2. (b)–(d) depict
results for n = 4.5, n = 3.5, and n = 4, respectively. The arrows on
the right panels point at the Hund bands [70], with “...” denoting the
peaks observable only on a lattice. The solid lines in the left column
mark the −2JH, −3JH, and −5JH slopes. The unlabeled peaks are
Hubbard bands which have a U dependence [21]. Results obtained
with DMRG on an L = 8 lattice with broadening η = 0.1.

bands are well developed [see, e.g., the inset of Fig. 2(a)].
Away from half filling, U ∼ W does not suppress the fluc-
tuations. They are significant even at integer n, and vanish
only at elevated U ∼ 10W [5,61,72]. Consequently, the many-
body gs has significant contribution of states with neighboring
local occupations, |n − 1〉 and |n + 1〉. Adding/removing par-
ticles in these states allows reaching the higher multiplets of
the atomic ground-state subspace |n〉, and the Hund bands
emerge.

Consider the n = 4 case, i.e., one electron above half filling
for 3oH. In the atom, the gs has only 4-electron configurations,
but in the lattice we find significant on-site fluctuations to 5-
and 3-electron states [4,73]. In Fig. 3(d), we project onto the
same configurations as for n = 4.5 and again find the 2JH

Hund band (originating in the n = 5 → 4 transitions). We
should notice only half of the peak is exhausted by the pro-
jection onto |↑↓,↓,↑〉 and our results also indicate a weak U
dependence. We could not discern Hund bands corresponding
to electron addition processes from 3-electron states: For a
high-spin initial configuration n = 3, S = 3/2, the selection
rules forbid reaching the low-spin n = 4, S = 0 state [74].

Conclusions. We showed that the charge fluctuations and
finite Hund exchange present in the multiorbital Hubbard
model cause the formation of unique bands of excitations.

FIG. 4. (a) Aγ (ω) calculated with the DMFT method for an
orbitally degenerate three-orbital Hubbard model with semicircular
DOS, integer filling n = 4, U/D = 3.8, and JH/D = 0.20, . . . , 0.40.
The half bandwidth D = 1 is used as the energy unit; see [21] for
details. Triangles mark ω = −2JH with a constant shift of −0.1
[70]. (b) Optical conductivity ωσ (ω) vs the interaction U . The lines
mark the atomic-limit energy scales. Notice the 2JH peak appearing
for U/W > 0.8. Inset: Data for U/W = 1.5. Results obtained via
DMRG for the gKH model with n = 1.5, JH/U = 0.25, L = 24 sites,
and broadening η = 0.1.

These Hund bands are formed by the energetically costly low-
angular-momentum states (i.e., on-site configurations which
break the Hund’s rules) and they do not depend on Hubbard
U . The latter makes them distinct from the Hubbard-band
multiplet splittings. Among the Hund bands the canonical
spin-singlet mode (ω 
 2JH) is especially prevalent.

Our results are a generic consequence of multiorbital sys-
tems. They originate in the existence of higher multiplets;
hence they do not depend on the presence of the orbital-
selective Mott phase (see [21] for additional discussion) or on
the system’s dimensionality. To confirm this, in Fig. 4(a), we
present DMFT calculations in infinite dimensions. We focus
on generic rather than material-specific features and consider
a semicircular density of states and orbital degeneracy [21].
The DMFT results clearly show the 2JH mode. In Supplemen-
tal Material [21], we repeat the calculations for a typical t2g

DOS and also find the Hund band.
Our findings are relevant for ARPES, resonant inelastic

x-ray scattering [75], Raman spectroscopy [76,77], nonequi-
librium investigations [78–80], and reflectivity/transmission
measurements [81–84]. Figure 4(b) demonstrates the last: It
presents how the optical conductivity [21] evolves with U
for the gKH model at n = 1.5. Crucially, we observe the
Hund band at ω 
 2JH. Often, such additional spectral fea-
tures are attributed to the interband transitions. Here, we
showed that additional modes can also originate in the Hund
exchange and, consequently, can be used to estimate the value
of JH.
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Meevasana, M. Shi, M. Radović, N. C. Plumb, A. S. Gibbs,
A. P. Mackenzie, C. Berthod, H. U. R. Strand, M. Kim, A.
Georges, and F. Baumberger, High-Resolution Photoemission
on Sr2RuO4 Reveals Correlation-Enhanced Effective Spin-
Orbit Coupling and Dominantly Local Self-Energies, Phys.
Rev. X 9, 021048 (2019).

[20] D. Bauernfeind, M. Zingl, R. Triebl, M. Aichhorn, and
H. G. Evertz, Fork Tensor-Product States: Efficient Multi-
orbital Real-Time DMFT Solver, Phys. Rev. X 7, 031013
(2017).

[21] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.L081102 for (1) Refs. [22–30], not
cited in the main text, (2) definition of the single-particle
spectral function, (3) three-orbital results for the momentum
dependence of the spectral function, (4) two- and three-orbital
results for fixed JH (showing that Hund bands are U in-
dependent whereas Hubbard bands are not), (5) derivation
of the atomic-limit energies for the three-orbital model, (6)
Hund bands in an orbitally degenerate three-orbital system,
(7) Hund bands for orbital-dependent interactions, (8) details
of the DMFT calculations, (9) DMFT calculations for a re-
alistic t2g density of states, and (10) definition of the optical
conductivity σ (ω).

[22] E. Jeckelmann, Dynamical density-matrix renormalization-
group method, Phys. Rev. B 66, 045114 (2002).

[23] W. Stephan and K. Penc, Dynamical density-density correla-
tions in one-dimensional Mott insulators, Phys. Rev. B 54,
R17269 (1996).

[24] R. Žitko and T. Pruschke, Energy resolution and discretization
artifacts in the numerical renormalization group, Phys. Rev. B
79, 085106 (2009).

[25] R. Žitko, NRG Ljubljana, https://zenodo.org/record/4841076
[26] H. Wadati, J. Mravlje, K. Yoshimatsu, H. Kumigashira, M.

Oshima, T. Sugiyama, E. Ikenaga, A. Fujimori, A. Georges,
A. Radetinac, K. S. Takahashi, M. Kawasaki, and Y. Tokura,
Photoemission and DMFT study of electronic correlations in

L081102-5

https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1073/pnas.2207449119
https://doi.org/10.1038/nmat3120
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1038/s41535-017-0059-y
https://doi.org/10.1103/PhysRevLett.92.216402
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevLett.112.106405
https://doi.org/10.1103/PhysRevLett.123.027203
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1038/s42005-020-00480-5
https://doi.org/10.1103/PhysRevLett.92.256401
https://doi.org/10.1103/PhysRevLett.106.146401
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.87.205135
https://doi.org/10.1016/j.crhy.2015.11.003
https://doi.org/10.1103/PhysRevX.9.021048
https://doi.org/10.1103/PhysRevX.7.031013
http://link.aps.org/supplemental/10.1103/PhysRevB.108.L081102
https://doi.org/10.1103/PhysRevB.66.045114
https://doi.org/10.1103/PhysRevB.54.R17269
https://doi.org/10.1103/PhysRevB.79.085106
https://zenodo.org/record/4841076
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