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Stability of the interorbital-hopping mechanism for
ferromagnetism in multi-orbital Hubbard models
Ling-Fang Lin 1✉, Yang Zhang 1✉, Gonzalo Alvarez2, Michael A. McGuire 3, Andrew F. May 3,

Adriana Moreo 1,3 & Elbio Dagotto 1,3

The emergence of insulating ferromagnetic phase in iron oxychalcogenide chain system has

been recently argued to be originated by interorbital hopping mechanism. However, the

practical conditions for the stability of such mechanism still prevents the observation of

ferromagnetic in many materials. Here, we study the stability range of such ferromagnetic

phase under modifications in the crystal fields and electronic correlation strength, con-

structing a theoretical phase diagram. We find a rich emergence of phases, including a

ferromagnetic Mott insulator, a ferromagnetic orbital-selective Mott phase, together with

antiferromagnetic and ferromagnetic metallic states. We characterize the stability of the

ferromagnetic regime in both the Mott insulator and the ferromagnetic orbital-selective Mott

phase forms. We identify a large stability range in the phase diagram at both intermediate and

strong electronic correlations, demonstrating the capability of the interorbital hopping

mechanism in stabilizing ferromagnetic insulators. Our results may enable additional design

strategies to expand the relatively small family of known ferromagnetic insulators.
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Transition metal (TM) systems involving multi-orbital cor-
related electrons continue attracting much attention due to
their rich physical properties1–6. In the standard Hubbard

Hamiltonian of a multiorbital system, the interplay of the ele-
ments of the hopping matrix, the crystal fields Δ splitting orbitals,
the Hubbard repulsion U, and the Hund coupling JH linking all
orbitals, often leads to several intriguing electronic phases arising
from their competition, such as the molecular-orbital state in
dimers5, the spin-singlet state7,8, various forms of orbital
ordering9,10, and the recently much-addressed orbital-selective
physics11–16. An attractive example of orbital-selective states is
the unusual orbital-selective Mott phase (OSMP) (Fig. 1a),
involving a mixture of localized and itinerant behavior of the
different orbitals when in the intermediate electronic correlation
region17–21.

It is precisely the intermediate coupling regime that harbors the
most surprises because in this region hand-waving lines of rea-
soning are often not trustworthy since many couplings are similar
in magnitude and reliable predictions are difficult, unless invol-
ving robust computational methodologies. This is the true regime
of “complexity” in correlated electrons, where the expression
complexity is used as denoting the emergence of unexpected
properties from seemingly simple local interactions. This inter-
mediate region will be the focus of this work.

Before moving into the focus of present contribution, we wish
to briefly remind the reader of the practical importance of
enlarging the family of ferromagnetic (FM) or ferrimagnetic
insulators. Materials with these properties have important
applications in the field of spintronics, where their low magnon
damping and ability to exchange couple magnetism into neigh-
boring materials are particularly useful22–24. Compared to anti-
ferromagnetic (AFM) insulators, FM insulators are relatively rare,
particularly among oxides25–27. Ferrimagnetic ferrite garnets like
Y3Fe5O12 (yttrium iron garnet, or YIG) are commonly used in
devices; however, some limitations of these materials have been
noted and development of alternatives is an active and important
area of research28. Perhaps the earliest recognized example of a
FM insulator was CrBr329. The combination of FM order and
cleavability has made this compound, its analogue CrI3, and the
related compounds CrSiTe3 and CrGeTe3 important materials in
the field of functional van der Waals heterostructures24,30,31.
Although ferromagnetism is usually associated with TMs, several
rare-earth-based FM insulators are also known, including the
rock-salt structure compounds EuO, EuS, and mononitrides of
several rare earth elements32,33. Hexagonal ferrites and spinels
such as CoFe2O4

34,35 are also of interest28. FM semiconducting
behavior has also been reported in spinel chalcogenides like
CdCr2S4 and CrCr2Se427,36.
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Fig. 1 Orbital-selective Mott phase, the half-full mechanism, and model Hamiltonian. a Sketch of the local density-of-states for the orbital-selective Mott
phase (OSMP) and Mott insulator (MI) phases, in a multi-orbital system with electronic correlations. Here we use two electrons in two orbitals per site, as
example. For the OSMP, one orbital forms a Mott state with a gap, while the other orbital remains itinerant and gapless, leading to a globally metallic phase.
For the MI state, both orbitals form Mott states, resulting in an insulating phase. b Sketch of the FM superexchange mechanism discussed in ref. 39 induced
by the large entanglements between doubly occupied and half-filled orbitals. The half-filled orbitals are coupled by Hund’s coupling JH. Orbitals are
indicated by blue lines. Electrons with spin up or down are indicated by red or gray arrows, respectively. The two-way thin arrows indicate the overlap
between inter-site orbitals. The virtual hopping process is highlighted by the red dashed ovals. c The effective Wannier functions (WF) of orbital γ1 (dyz) for
Fe1 and γ2 (dx2�y2 ) for Fe2 with bridges using the Se1 and Se2 px orbitals. The robust overlap between these WFs, which is related to the amplitude of
hoppings t12, are indicated by the dashed red ovals. Isosurface is set to be 3 here. Different colors represent different signs of the WF. The Wannier
function plot is produced using WANNIER90 code42 and VESTA65. d The three-orbital Hubbard model on a one-dimensional chain lattice geometry used
in our study, including the kinetic component and electronic interaction. tγγ0 represents hopping from orbital γ to orbital γ0 between nearest neighbor sites i
and i+ 1. Crystal-field splittings are labeled by Δ0/1/2. Orbitals are marked by γ0/1/2. Hubbard repulsion U, U0 between electrons at different orbitals, Hund’s
coupling JH, and the inter-orbital electron-pair hopping terms are also list, more details can be found in Model Hamiltonian part. Inset: The non-interacting
band structure along the chain direction using the original parameters from ref. 39.
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Consider now the primary specific goal of this publication.
Most TM insulating materials are AFM while few display FM
order. This can be understood from the simplicity and robustness
of Anderson’s superexchange AFM theory which is based on
second-order perturbation theory in the hopping amplitudes37,38.
However, recently a “half-full” mechanism involving large
entanglements between doubly occupied and half-filled orbitals
was proposed39 to understand the puzzling origin of FM order
along the chain direction in Ce2O2FeSe240,41, as shown in Fig. 1b.
Note that we employ the word “entanglement” between orbitals
with different electronic population as indicating that in a
quantum description these orbitals cannot be considered as
independent of one another, but they are intrinsically coupled
and this interplay of two orbitals with different electronic
populations is at the heart of the interorbital hopping mechanism
proposed.

Specifically, based on second-order perturbation theory in the
hopping amplitudes, the total gain in energy of the FM config-
uration due to the robust hopping t12 between half-occupied and
fully occupied orbitals was found to be:

ΔEFM ¼ � jt12j2
U � 3JH þ Δ

: ð1Þ

where Δ = Δ1− Δ2 is the crystal-field splitting between the half-
filled and double-occupied orbitals. On the other hand, in the
AFM state the total energy gained from t12 is

ΔEAFM ¼ � jt12j2
U � JH þ Δ

: ð2Þ

Hence, the interorbital electronic hopping t12 by itself favors a
FM interaction, basically driven by the Hund coupling. However,
the prevailing intra-orbital hoppings t11 or t22 favor a super-
exchange AFM state with gains in energy such as ΔE ~ - jt11j

2

UþJH
.

More details of analysis of second-order perturbation theory can
be found in Supplementary Note II.

Then, the dominant magnetic order of the material under
consideration is decided by the competition of these different
channels. Our previous work showed that in some cases, the
hopping t12 can be large enough to stabilize a FM insulating
phase, without the need to resort to the more frequently men-
tioned mechanism of double exchange, which produces robust
FM but with metallic character, and the nearly 90∘ bonds, typi-
cally associated with low critical temperatures. It is also worth
remarking that while our previous theoretical work, as well as the
present contribution, are in one dimension, the simple second-
order perturbative foundations of the FM phase are robust and
valid in higher dimensions as well.

To intuitively understand the effective interorbital hopping t12
between the Fe1 dyz and Fe2 dx2�y2 orbitals, it is crucial to include
Se’s p orbitals in the Wannier90 calculations42. By comparing all
channels contributing to t12, we found out that the dominant
channel occurs when the Se’s px orbital acts as a “bridge” between
the 3d orbitals. To have an intuitive visual view of t12, the WFs
related to this px channel are shown in Fig. 1c. In this sketch, the
bending of the Fe-Se-Fe bond is important to achieve a nonzero
t12 matrix element.

While this mechanism has been observed for fixed hopping
and crystal fields39, some questions naturally arise on its stability
and transferability to other materials. How does the FM state
induced by this half-full mechanism evolve by varying the crystal-
field values as well as the strength of the electronic correlations?
At intermediate couplings, could the OSMP with FM order be
instead stable in this half-full system with crystal field effects?
What other magnetic or electronic phases can emerge by con-
sidering the competition of those parameters in an extended

phase diagram? In other words, are the previous results39 an
anomaly or truly indicative of a general mechanism?

To address these broad goals, we investigated the crystal field
and electronic correlations effects on the half-full FM ground
state previously reported, by using the density matrix renorma-
lization group (DMRG) technique on the multi-orbital Hubbard
model. Fixing the Hund coupling to JH/U= 0.25, realistic for
materials of the iron family4, the magnetic and electronic phase
diagram was theoretically constructed varying Δ and U/W. One
of our main results is that the FM phase is stable in a large
portion of the phase diagram. Namely, the previously reported
FM phase due to a robust interhopping amplitude t12 is here
shown not to be fragile, as often spin liquid states tend to be, but
representative of broad tendencies that until now were not con-
sidered by the community of experts. Specifically, we found both
the recently discovered FM Mott insulator (MI) and the FM
OSMP phases are stable at intermediate and strong electronic
correlation, respectively. Our results potentially open a vast ave-
nue of research and the possibility for the family of FM insulators
to be considerably enlarged. We propose that via ab-initio tech-
niques, a systematic exploration of materials with robust inter-
orbital hopping could provide the first steps toward additional
FM insulators in the near future.

In addition, several other magnetic electronic phases are also
revealed in our study arising from the competition of hopping,
crystal field splitting, and electronic correlations, involving an
AFM2 metal (i.e. an AFM state with blocks of size 2), a FM
metallic state, and staggered canonical AFM1 MI phases. This
exemplifies the complexity that emerges from multiorbital models
when they are analyzed with reliable computational techniques,
particularly in the challenging intermediate coupling regime.

Results
Model Hamiltonian. In this work, as an example of our broad
ideas, we employ a canonical three-orbital Hubbard model
defined on a one-dimensional (1D) chain lattice, including the
kinetic energy and interaction terms written as H=Hk+Hint.
The tight-binding kinetic component is

Hk ¼ ∑
iσ

α!γγ0

t α
!
γγ0 cyiσγc

iþ α!σγ0
þ H:c:

� �
þ ∑

iγσ
Δγniγσ ; ð3Þ

where the first term represents the hopping of an electron from
orbital γ at site i to orbital γ0 at the nearest neighbor site iþ α!.
cyiσγ(ciσγ) is the standard creation (annihilation) operator, γ and γ0

represent the different orbitals, and σ is the z-axis spin projection.
Δγ represent the crystal-field splitting of each orbital γ.

The electronic interaction portion of the Hamiltonian includes
the standard intraorbital Hubbard repulsion U, the electronic
repulsion U 0 between electrons at different orbitals, the Hund’s
coupling JH, and the on-site inter-orbital electron-pair hopping
terms. Formally, it is given by:

Hint ¼ U ∑
iγ
ni"γni#γ þ U 0 � JH

2

� �
∑
i

γ<γ0

niγniγ0

�2JH ∑
i

γ<γ0

Si;γ � Si;γ0 þ JH ∑
i

γ<γ0

Py
iγPiγ0 þ H:c:

� �
;

ð4Þ

where the standard relation U 0 ¼ U � 2JH is assumed and
Piγ= ci↓γci↑γ.

Specifically, here we consider a three-orbital Hubbard model
with four electrons per site (see the sketch in Fig. 1d), where the

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01314-w ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:199 | https://doi.org/10.1038/s42005-023-01314-w |www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


crystal-field splitting and hopping matrix are adopted from the
real iron chain Ce2O2FeSe2 system as a concrete example39. To
study the crystal-field splitting effects between half-filled and fully
occupied orbitals we fixed the values of Δ0 and Δ1 as in39 but vary
Δ2, as well as U/W. In the “DMRG” portion of the methods
section, the reader can find the specific 3 × 3 hopping matrix and
values of Δ0 and Δ1 employed. Note that all the DMRG
calculations are performed at temperature T= 0.

Phase diagram with crystal field effects. First, using DMRG we
constructed the general phase diagram varying the electronic
correlations U/W and crystal field splitting Δ2, as shown in Fig. 2.
Although the original model parameters are derived from the five
d orbitals of the real iron chain materials Ce2O2FeSe2, the main
conclusions are not limited to this specific material or to three-
orbital models, but expand to any other system with large inter-
orbital hopping between half-filling and fully occupied orbitals.
Our primary aim is to test the interorbital hopping driven FM
mechanism beyond Ce2O2FeSe2. This phase diagram is obtained
from measurements of the spin-spin correlation S(r), the site-
average occupancy nγ, and charge fluctuations δnγ, all at JH/

U= 0.25 as already explained. The results are rich and include six
different phases: (1) paramagnetic (PM) metallic (M) phase, (2)
AFM2 M state, (3) FM OSMP, (4) AFM1 MI phase, (5) FM M
state, and (6) FM MI phase. Note that in our case all the tran-
sitions between magnetic states are discontinuous in the order
parameters, thus first order (with the caveat that we are in 1D
thus the magnetic order is only quasi long-range order). The only
exception is between a PM and ordered state: these tend to be
smooth transitions.

At small electronic correlation (U/W≲ 0.7), the system
displays PM behavior with three itinerant orbitals, where the
spin correlation S(r) involving two spin operators separated by a
distance r decays rapidly with distance, as shown in Supplemen-
tary Note III. In this region, the hopping term plays the leading
role, leading to the metallic behavior. At intermediate Hubbard
coupling strength, the FM OSMP state—involving coexisting
localized and itinerant electrons—is found to be stable in a large
range of Δ2. Furthermore, two magnetic and electronic phases are
also obtained in this intermediate region by changing Δ2. They
are the AFM2 M and AFM1 MI phases, arising from the
competition of Δ2 and U/W. At large U/W, MI states with
localized charges (n number of electrons either 1 or 2) dominate
over a broad range of the crystal-field splitting Δ2. Also an FM M
phase is found in a small region due to the competition of Δ2,
U/W, and hopping amplitudes.

In this rich DMRG phase diagram, the FM phase is dominant
in a large region of Δ2 with the conduction type determined by
the strength of the electronic correlations. At intermediate U/W,
the system has simultaneously metallic and insulating orbitals,
leading to the FM OSMP state. This OSMP is induced by the
competition between hopping values of different orbitals and
electronic correlations (Hubbard U, Hund coupling JH): the
electrons in the orbital with smaller hopping are localized at
intermediate correlations U/W while the electrons in orbitals with
larger hoppings remain itinerant i.e. metallic with non-integer
filling. If we further increase the electronic correlations, the FM
OSMP metallic state transitions to the FM MI phase where all
three orbitals are fully Mott-localized at strong U/W. More details
about Mott transition at Δ2 ~−0.8 eV is discussed in Supple-
mentary Note IV. By decreasing the crystal-field splitting Δ2

towards zero, the FM state changes to different AFM phases
because in this regime the canonical AFM superexchange
mechanism dominates. Note that there is a small OSMP region
at large U/W and Δ2 ~−0.3 eV, where orbital γ= 1 is the
localized one. This is slightly different from the large OSMP
region at intermediate correlations, where orbital γ= 0 is the
localized one. The reason is that, in the smaller OSMP region, Δ2

is close to the crystal splitting value of orbital γ= 0, rendering
stronger competition between orbital γ= 0 and γ= 2, while γ= 1
is easier to be localized.

FM-OSMP vs crystal field splitting. At intermediate Hubbard
coupling strengths, the FM OSMP is found to be stable in a large
region when decreasing Δ2 into negative values (Fig. 2). Let us
now focus on the crystal-field splitting effects at intermediate
electronic correlation U/W= 1.6 in the phase diagram.

In the range −1.1 eV≲ Δ2≲−0.2 eV and at U/W= 1.6, the
spin-spin correlation S(r)=〈Si ⋅ Sj〉 vs r indicates FM order along
the chain geometry (see the results at Δ2 = −0.8 and −0.4 eV in
Fig. 3a). The distance is defined as r ¼ i� j

�� �� with i and j site
indexes. As shown in Fig. 3b, a sharp peak is also observed at
q= 0 in the spin structure factor S(q), clearly indicating FM
order. In addition, the occupation of orbital γ= 0 is locked at the
integer 1 in this region of Δ2, leading to the Mott-localized
characteristic in this orbital, while the γ= 1 and γ= 2 orbitals
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Fig. 2 DMRG phase diagram. Phase diagram of the three-orbital Hubbard
model varying U/W and crystal-field splitting Δ2, using DMRG and an
L= 16 chain system with open boundary conditions. Note that the three-
orbital character of the problem renders this system equivalent to a
challenging highly entangled 3 × 16 ladder lattice, with hoppings at fairly
long distances such as between top and bottom legs in this effective 3 × 16
lattice. We use the prototypical value JH/U= 1/4. Different electronic and
magnetic phases are indicated by solid regions and labels, including
paramagnetic metal (PM M, in pink), ferromagnetic orbital-selective Mott
phase (FM OSMP, in light blue), ferromagnetic Mott insulator (FM MI, in
yellow), antiferromagnetic1 Mott insulator (AFM1 MI, in purple),
ferromagnetic metal (FM M, in maroon) and antiferromagnetic2 metal
(AFM2 M, in red). Due to strong competition between opposite tendencies,
some mixed phases, marked by purple stars, are found near the boundaries,
especially around Δ2 ~−0.25 eV and U/W ~ 8 (white region). The
antiferromagnetic4 (AFM4) phase, marked by a purple circle, is also
displayed in this region. Note that the boundaries should be considered only
as crude approximations. We simply cannot have a very dense grid of
points due to the high cost of DMRG. However, the existence of the six
regions shown was clearly established by robust DMRG evidence near their
centers, even if the boundaries are only crude estimations. All calculated
data points are marked by gray stars. The two vertical dashed lines at
U/W= 1.6 and 8.0 correspond to the results of Figs. 3 and 5.
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have non-integer electronic densities, indicating metallic beha-
vior, as displayed in Fig. 3c. To better understand the
characteristics of the metallic vs. insulating behavior in different
orbitals, we also studied the charge fluctuations δnγ for different
orbitals, as displayed in Fig. 3d. In the region (−1.1 eV≲ Δ2≲
−0.2 eV), the γ= 1 and γ= 2 orbitals have some charge
fluctuations because of the itinerant nature of their electrons.
However, the charge fluctuation of γ= 0 is basically zero due to
its localized orbital characteristics. Furthermore, hS2i0 saturates at
3/4, corresponding to a half-filled orbital with spin 1/2 at each
site, while hS2i1 and hS2i2 are less than 3/4, as shown in Fig. 3e.
Thus, the system displays the orbital selective Mott characteristics
with one localized orbital (γ= 0) and two itinerant orbitals (γ= 1
and γ= 2) and with global FM order.

Decreasing further Δ2 (≲−1.1 eV), the system displays the
canonical staggered AFM phase with the ↑-↓-↑-↓ configuration
unveiled by S(r), while the spin structure factor S(q) shows also a
sharp peak at q= π (see results for Δ2=−1.2 eV in Fig. 3b).
Moreover, all three orbitals are integer occupied (n0= 1, n1= 1,

and n2= 2) in this state. Furthermore, hS2i0 and hS2i1 saturates at
3/4, corresponding to the half-filled orbital, while hS2i2 is zero,
indicating a double-occupied orbital, as shown in Fig. 3e. Hence,
the system is in an AFM1 MI state in this region of Δ2. Because
Δ= Δ1− Δ2 is larger than the Hund coupling JH, the extra
electrons prefer to stay in the γ= 2 orbital even with a large
interorbital hopping t12. In this case, the system can be effectively
regarded as a two-half-occupied orbital system, where the
intraorbital hoppings lead to the Heisenberg AFM coupling,
resulting in the expected AFM1 phase characteristic of one-
orbital Hubbard U models, where the Anderson superexchange
prevails.

As an extra clarification, the small AFM1 MI region at around
Δ2≲−1.1 eV and U/W ~ 1, alternatively, may be a Slater
insulator (purple with red dashed lines). Clearly, between the
weak coupling limit that harbors the Slater insulator and the
strong coupling limit where the Mott insulator is located, there is
a complex crossover region with features common to both3. The
most strict way to distinguish Mott vs Slater is to study the
insulating vs metal characteristics, respectively, above the
magnetic ordering temperatures. But performing DMRG at a
finite temperature for a multiorbital model is beyond our
computational resources. Moreover, in 1D a sharp magnetic
critical temperature is not expected. In the multi-orbital model,
this open question is worthy of more detailed investigations in the
future.

Increasing Δ2, the AFM tendency also increases, leading to
competition with the FM tendency, resulting in more unusual
phases. When Δ2 >−0.2 eV, the spin-spin correlation S(r) at
Δ2= 0.0 eV shows clearly the formation of antiferromagnetically
coupled FM spin clusters with a ↑-↑-↓-↓ AFM2 pattern, as shown
in Fig. 3a. Furthermore, the spin structure factor S(q) also
displays a sharp peak at q= π/2, corresponding to the AFM2
phase, as shown in Fig. 3b. Moreover, the four electrons per site
are in non-integer orbitals with large charge fluctuations,
indicating metallic behavior (Figs. 3c and d). Moreover, the
operator hS2iγ for different orbitals are all less than 3/4, in
agreement with the anticipated metallic nature of this state, as
shown in Fig. 3e. Finally, for the benefit of the readers, note that
the intuitive origin of the AFM2 “block” patterns has been
clarified in previous literature and will not be repeated here.
Essentially, in extended phase diagrams varying the electronic
density, the block states arise as a compromise between fully FM
and staggered AFM1 states, i.e., between FM vs AFM tendencies.
Interested readers are referred to refs. 43,44. For the readers to
better understand those phase transitions, we also show the spin
structure S(q) at q= 0, π/2, and π, corresponding to the FM,
AFM2, and AFM1 phases, respectively, as a function of Δ2, as
displayed in Fig. 3f.

The projected density of states (PDOS) ργ at U/W= 1.6. To
better understand the many different phases at intermediate elec-
tronic correlation, we calculated the orbital-resolved projected
density of states ργ(ω) vs frequency ω by using the dynamical
DMRG, where the dynamical correlation vectors were obtained
using the Krylov-space approach45,46. A broadening parameter
η= 0.1 was chosen in our DMRG calculations, as in previous cases.
The chemical potential is obtained from μ= (EN+1− EN−1)/2,
where EN is the ground state energy of the N-particle system. ργ(ω)
is calculated from the portions of the spectra below and above μ,
respectively, using:

ργðq;ω<μÞ ¼
1
π
Im ψ0 c

y
i;γ

1
ωþH � Eg þ iη

ci;γ

�����
�����ψ0

* +" #
; ð5Þ

Fig. 3 Observables at intermediate correlation. a Spin-spin correlation
S(r)= 〈Si ⋅ Sj〉 (with r ¼ i� jj j in real space) and b the spin structure factor
S(q), at different values of Δ2, all at JH/U = 0.25 and U/W= 1.6. c Orbital-
resolved occupation number nγ. d Charge fluctuations
δnγ ¼ 1

L∑iðhn2i;γi � hni;γi2Þ. e Averaged value of the total spin-squared hS2iγ
vs. Δ2, at JH/U = 0.25 and U/W= 1.6. f The spin structure S(q) at 0, π/2,
and π as a function of Δ2. (c-f) Different electronic and magnetic phases are
marked by solid regions and labels, including antiferromagnetic1 Mott
insulator (AFM1 MI, in purple), ferromagnetic orbital-selective Mott phase
(FM OSMP, in light blue), and antiferromagnetic2 metal (AFM2 M, in red).
For all these results, the chain length is L= 16 and DMRG was used.
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ργðq;ω>μÞ ¼
�1
π

Im ψ0 ci;γ
1

ω�H þ Eg þ iη
cyi;γ

�����
�����ψ0

* +" #
; ð6Þ

ργðωÞ ¼ ργðq;ω<μÞ þ ργðq;ω>μÞ; ð7Þ
with ψ0 as the ground state.

As displayed in Fig. 4, we calculated ργ(ω) for several Δ2’s,
corresponding to different phases, at JH/U= 0.25 and U/W= 1.6.
At Δ2=−1.2 eV, the γ= 0 and γ= 1 orbitals display a localized
behavior with a Mott gap, while γ= 2 shows fully occupied
characteristics below the chemical potential μ, Fig. 4a. Hence, this
is a MI state, in agreement with previous discussions based on the
site-average occupancy and charge fluctuations for this region.

At Δ2=−0.4 eV, the γ= 0 orbital displays localized behavior
with a Mott gap. Meanwhile, the γ= 1 and γ= 2 orbitals have
electronic states crossing the Fermi level, leading to metallic

behavior, see Fig. 4b. Hence, the coexistence of localized and
itinerant carriers supports the OSMP picture. By considering the
spin-spin correlations S(r) and spin structure factor S(q), this
state is an FM OSMP. In addition, the OSMP character is clear in
our present work, supported by the results of charge occupation
number and spin squared hS2iγ: a half-filled γ= 0 orbital does not
have any charge or magnetic fluctuations while the γ= 1 and
γ= 2 orbitals have non-integer numbers with sizeable charge and
magnetic fluctuations (Fig. 3c–e). In fact, the hole-doped
manganites are also an FM OSMP system, with t2g orbitals
localized and eg metallic47. In doped manganites, FM is induced
by the double exchange mechanism48, where off-diagonal
hopping between the half and empty eg orbitals plays an
important role, similar to the half-full hopping discussed here.

Because of the small weight of the DOS for the orbitals 1 and 2
when crossing the Fermi level (Fig. 4b), an insulating tendency
can not be fully excluded. Then, we also calculated the DOS
around the Fermi energy with smaller parameters Δω= 0.02 eV
and η= 0.05 eV to confirm our results. In this case, no obvious
difference with the previous results was found, as shown in the
inset in Fig. 4b, indicating that the value of the broadening is not
a problem. In addition, the chemical potential is shown in the
inset of Fig. 4b. μ is obtained by integrating the density of states in
ω from the far left to a value that matches the total number of
electrons expected. Note that the calculated chemical potential μ
has an error bar of about ±0.05 eV due to the grid used in the
horizontal axis. At the Fermi level, the weight of γ= 0 orbital is
virtually zero, while the γ= 1 and γ= 2 orbitals have small but
non-zero weights, suggesting a clear difference between the three
orbitals. In principle, if we have a dense enough ω, we could
obtain more accurate μ by counting better the total occupied
number of electrons. However, due to the very high cost of
DMRG, we cannot have a very dense grid of ω to obtain ρ(ω) and
μ with higher accuracy. Nevertheless, within these caveats, the
results indicate that the DOS is independent of the broadening
parameter η.

Furthermore, we also used the formula as defined in ref. 49 to
measure the gap as E(N+ 1)+ E(N− 1)− 2E(N)=−0.00098 eV
which is basically zero, indicating that this is a metallic phase. We
alert the readers that previous work by some members of this
collaboration for another model observed orbital order and an
insulating behavior with a small gap when the magnetic order is
FM in the OSMP regime49. Note that we can not exclude such a
possibility that the system is in a non-orbital-selective insulating
state with a very small gap, beyond our numerical accuracy. Here,
we can only claim with certainty that in the present work with the
grid of ω points used and with our measurement of orbital order
correlations, and our measurement of the gap, we do not observe
indications of orbital order and of a finite gap at the Fermi level.
On the other hand, considering the small values of the DOS for
orbitals 1 and 2, it is likely that nearby in parameter space an
orbital-ordered insulating state could be stabilized. Searching for
this phase is left for future efforts. Figure 4c clearly shows that all
three orbitals are metallic with some electronic bands crossing μ,
indicating itinerant electronic behavior, leading to an orbitally
metallic state. This AFM2 metal was also predicted in the iron
selenide chain based on the same model, where the crystal-field
splitting Δ between half-filled and fully occupied orbitals is also
small50.

Strong U/W region. By increasing further the electronic corre-
lation strength, the OSMP itinerant orbitals would become fully
Mott-localized by the Hubbard strength U, resulting in a MI
phase. To better understand the crystal-field effects on the FM MI
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Fig. 4 Orbital-resolved density of states. Density of states (DOS) ργ(ω) of
different orbitals for different values of Δ2, at U/W= 1.6 and JH/U= 0.25.
a Antiferromagnetic1 Mott insulator (AFM1 MI) state at Δ2 = −1.2 eV.
b Ferromagnetic orbital-selective Mott phase (FM OSMP) phase at Δ2 =
−0.4 eV. c Antiferromagnetic2 metal (AFM2 M) state at Δ2 = 0.0 eV.
Δω= 0.1 eV and broadening parameter η= 0.1 eV were chosen in our
DMRG calculations. The black dash line represents chemical potential μ,
which is calculated by using μ= (EN+1− EN−1)/2. For the inset in (b),
smaller parameters Δω= 0.02 eV and η= 0.05 eV were used to calculate
the DOS around the Fermi energy for comparison. The results indicate that
the DOS is independent of the broadening parameter η. The purple dashed
line represents the chemical potential μ, which is calculated by integrating
the density of states for all ω’s to count the number of electrons.
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state, we will focus on the discussion of the main results for
different values of Δ2 at strong electronic correlation U/W= 8 in
the phase diagram.

The FM MI state is found to dominate in a large region of Δ2,
as shown in Fig. 5. When Δ2≲−0.5 eV, the γ= 0 and γ= 1 are
half-filled (n0= 1 and n1= 1) and γ= 2 is a fully occupied orbital
(n2= 2) without any charge fluctuation, as shown in Fig. 5a, b.
Meanwhile, hS2i0 and hS2i1 are fixed at 3/4, while hS2i2 is zero,
indicating a strong Mott-localized behavior, as shown in Fig. 5c.
Furthermore, the critical Hubbard U for the metal-insulator
transition of the FM phase decreases as the crystal-field splitting
Δ = Δ1− Δ2 (between doubly occupied and half-filled orbitals)
increases. In this case, the FM MI state becomes more stable with
larger crystal-field splitting Δ.

By increasing the crystal field Δ2, the system has non-integer
electronic density nγ in the three orbitals, see Fig. 5a, while the
charge fluctuations δnγ are large, leading to a metallic phase. In
particular, when Δ2 is in the region, closer to Δ0=−0.277 eV and
Δ1=−0.203 eV, the competition between orbitals is the
strongest. When Δ2≳ 0.0 eV, the three orbitals begin to localize
with integer electronic density nγ without charge fluctuations,
leading to a MI state, as shown in Fig. 5b, c. In addition, the γ= 0
orbital becomes doubly occupied (n0= 2), while the γ= 1 and

γ= 2 orbitals are half-filled (n1= 1 and n2= 1). Furthermore, we
also present the spin structure S(q) at q= 0, π/2, and π,
corresponding to the FM, AFM2, and AFM1 phases, respectively,
for different values of Δ2 to help the readers better understand the
phase transitions, as shown in Fig. 5d. More details about spin-
spin correlation and spin structure factor is shown in Supple-
mentary Note VI.

Discussion
In multiorbital systems with more than half-filled orbitals, it was
recently shown that the interorbital hopping between half-filled
and fully occupied orbitals can lead to an FM insulating phase39.
To understand how this interorbital hopping driven FM
mechanism is affected by the crystal-field splitting Δ= Δ1− Δ2

between half-filled and fully occupied orbitals, as well as by the
strength of the Hubbard repulsion U/W, here we comprehen-
sively studied the Δ2 vs U/W phase diagram of a three-orbital
lattice model defined on a chain, by using DMRG many-body
techniques. By modifying the value of Δ2 over a broad range, the
FM phase was found to be quite stable in the phase diagram,
showing that the results of our previous study are not fragile, but
indicative of robust tendencies, which also apply in higher
dimensions. The FM state was found to display both FM OSMP
or FM MI behavior, at intermediate or strong electronic corre-
lations, respectively. In addition, several additional magnetic
electronic phases were also revealed in our phase diagram arising
from the competition of hoppings, crystal fields, and electronic
correlations, involving AFM2 M, FM M, and AFM1 MI states.

Our results indicate that the FM order induced by this half-
filled mechanism should be robust. This FM mechanism may
explain the FM order in some other materials besides the one we
studied before, such as in iron chains with d6 configuration51–53,
one-dimensional S= 1 Ni-based chains54, and Fe3GeTe255, where
their unique lattice geometry provides the possibility of strong
overlap between half-filled and fully occupied orbitals, thus
creating a robust value for the interorbital coupling. On the other
hand, it must be kept in mind that the intra-orbital hoppings (t11
and t22) lead to AFM tendencies, thus a competition of tendencies
will produce the final outcome. What other phases can be
obtained by increasing the values of those inter-orbital hoppings
in the large intra-orbital hopping case, as well as for different
electronic correlations remains to be investigated (especially the
evolution of the FM OSMP state).

Our study not only focuses on insulators but also on OSMP
metals. Because in our case the hopping t11 (between γ= 1
orbitals) is much smaller than others, the γ= 1 orbitals could
easily be localized while the other two orbitals still remain
metallic in the intermediate correlated region, leading to the FM
OSMP. Recently, a FM OSMP was reported in the Fe3GeTe2
system by neutron experiments56. A more detailed study for the
Fe3GeTe2 system would be interesting to perform. Furthermore,
in iron-based superconductors, the OSMP is believed by some
groups to play a key role to understand superconductivity13,57,58.
Hence, the next step is naturally to try to find additional real
materials with the FM OSMP state to study whether super-
conductivity can be found in that state, complementing our
search for FM insulators based on the interorbital hopping
mechanism here discussed.

All these future directions of research require systematic work
based on density functional theory (to calculate hopping and crystal
fields and to identify the relevant orbitals) plus model calculations
for correlations. Our study indicates the half-full mechanism could
lead to robust FM order under effects of crystal-field splitting.
Furthermore, AFM2 M and AFM1 MI phases were also found in
our DMRG study at intermediate or strong Hubbard strengths,

Fig. 5 Observables at strong correlation. a Orbital-resolved occupation
number nγ, b charge fluctuations δnγ ¼ 1

L∑iðhn2i;γi � hni;γi2Þ, and c averaged
value of the total spin-squared 〈S2〉, as a function of Δ2, at JH/U = 0.25 and
U/W= 8. d The spin structure S(q) at q= 0, π/2, and π as a function of Δ2.
a–d Different electronic and magnetic phases are indicated by solid regions
and labels, including ferromagnetic Mott insulator (FM MI, in yellow),
ferromagnetic metal (FM M, in maroon), antiferromagnetic2 metal (AFM2
M, in pink), and antiferromagnetic1 Mott insulator (AFM1 MI, in purple).
Here, the length of the chain is L= 16 and DMRG was used.
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where those phases were also found or predicted in some other iron
chain systems with the same electronic density. Our work is a
natural starting point point for a variety of future studies to realize,
both in theory and experiment, the important role of inter-hopping
between half-filled and full occupied orbitals. This area of research
has been barely touched until now.

Recently, the stability of the OSMP state with respect to the
addition of interorbital hoppings was discussed by using the single-
site dynamical mean-field theory but without including magnetism
at zero and finite temperature59. The next step would be interesting
to study this matter related to finite temperature by including
magnetism in more detail in future DMRG investigations.

In order to find new strong FM insulating states experi-
mentalists should focus on materials with large orbital entangle-
ment and strong crystal-field splitting between half-filled and
fully occupied orbitals. The FM OSMP also can be obtained in a
range of appropriate crystal field splittings, as in our calculations.
Furthermore, crystal field splitting sensitively depends on che-
mical bonds and crystal structures, which could be in practice
tuned by strain or pressure60,61.

Methods
DMRG method. The model Hamiltonian discussed here was studied by using the
DMRG method62,63, where the DMRG++ computer package was employed64. In
our DMRG calculations, we used an L= 16 sites cluster chain geometry with open-
boundary conditions. In addition, the electronic filling n= 4 in the three orbitals
was considered. Furthermore, at least 1200 states were kept during our DMRG
calculations and up to 21 sweeps were performed during the finite-size algorithm
evolution. Truncation error remains below 10−6 for all of our results. An example
input file and additional details can be found in Supplementary Note I. Note that
all the DMRG calculations are performed at zero temperature T= 0. Size effect is
discussed in Supplementary Note V.

The kinetic part of the Hamiltonian. The hopping matrix for the three-orbital
chain system is defined39 in orbital space as follows:

tγγ0 ¼
0:187 �0:054 0:020

0:054 0:351 �0:349

0:020 0:349 �0:433

2
64

3
75: ð8Þ

The crystal field splitting of the two orbitals are fixed as Δ0=−0.277 and
Δ1=−0.203 eV, while Δ2 was allowed to vary in our DMRG calculations. The total
kinetic energy bandwidth W is 2.085 eV. All parameters mentioned above,
involving the hopping matrix and crystal fields, were extracted from our previous
work39.

Observables. To obtain the phase diagram of the three-orbital 1D Hubbard model
varying U/W and Δ2, several observables were measured using the DMRG many-
body technique.

The spin-spin correlation is defined as:

Si;j ¼ hSi � Sji: ð9Þ
where Si ¼ ∑

γ
Si;γ .

The corresponding structure factor for spin is:

SðqÞ ¼ 1
L

∑
j; k

e�iqðj�kÞhSk � Sji; ð10Þ

The site-average occupancy of orbitals is:

nγ ¼
1
L
hniγσ i: ð11Þ

The orbital-resolved charge fluctuation is defined as:

δnγ ¼
1
L
∑
i
ðhn2γ;ii � hnγ;ii2Þ: ð12Þ

The mean value of the squared spin for each orbital is defined as:

hS2iγ ¼
1
L
∑
i
hSi;γ � Si;γi: ð13Þ

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.

Code availability
The computer codes used in this study are available at https://g1257.github.io/
dmrgPlusPlus/.
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