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Majorana corner states on the dice lattice
Narayan Mohanta 1,2,3✉, Rahul Soni 1,2, Satoshi Okamoto 1✉ & Elbio Dagotto 1,2

Lattice geometry continues providing exotic topological phases in condensed matter physics.

Exciting recent examples are the higher-order topological phases, manifesting via localized

lower-dimensional boundary states. Moreover, flat electronic bands with a non-trivial

topology arise in various lattices and can hold a finite superfluid density, bounded by the

Chern number C. Here we consider attractive interaction in the dice lattice that hosts flat

bands with C= ± 2 and show that the induced superconducting state exhibits a second-order

topological phase with mixed singlet-triplet pairing. The second-order nature of the topolo-

gical superconducting phase is revealed by the zero-energy Majorana bound states at the

lattice corners. Hence, the topology of the normal state dictates the nature of the Majorana

localization. These findings suggest that flat bands with a higher Chern number provide

feasible platforms for inducing higher-order topological superconductivity.
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H igher order topology in quantum matter has recently
generated a flurry of activity in several broad areas,
including the field of superconductivity1–11. At the

boundaries and vortex cores, a topological superconductor har-
bors Majorana quasiparticles, with potential value in the long-
sought area of decoherence-free quantum computing12–17.
Topological superconductivity can be induced, for example, by a
Rashba spin-orbit coupling together with a magnetic field18–21,
and also by a spatially-modulated spin texture in proximity to a
conventional superconductor22–25. A nth-order topological
superconductor in d dimensions hosts (d− n)-dimensional
Majorana states26. The corner-localized Majorana bound states
(MBS) in a second-order two-dimensional topological super-
conductor are particularly interesting because a two-dimensional
array of corner MBS—useful for demonstrating non-Abelian
statistics—can be easily achieved27–29. These corner MBS have
been proposed in many platforms including a topological insu-
lator in proximity to a d-wave or s±-wave superconductor,
extended Hubbard model with spin-orbit coupling30 and a
Josephson junction bilayer31–33.

Following the discovery of unconventional superconductivity
in twisted-bilayer graphene34, a series of studies suggested the
possibility of electronic pairing from repulsive interaction in
materials with a high density of states at the Fermi level, such as
in a flat electronic band, leading to superconductivity with a high
critical temperature35–39. When a flat band is topologically
nontrivial, the topological invariant places a lower bound on the
superfluid weight Ds i.e. Ds ≥ C, where C is the Chern number of
the flat band40,41. In this case, near a band-inversion wavevector,
the Berry phase can convert a repulsive interaction between two
oppositely-moving electrons into an effective attraction. There-
fore, the connection between the topology of the normal state and
the induced superconductivity has remained as an important
subject of investigation, especially in the presence of a repulsive
interaction42,43.

It is, however, mostly unclear whether the induced super-
conductivity in the topological flat bands is also topologically
non-trivial. Here we consider the topological flat bands with
C= ± 2 on the dice lattice44,45 in the presence of an attractive
interaction and show that second-order topological super-
conductivity is induced by populating a topological flat band at
the Fermi level. A hallmark of the induced second-order topo-
logical superconducting phase is found via the zero-energy MBS,
protected by mirror symmetry and localized at the lattice corners.

The dice lattice and the four corner MBS are shown schema-
tically in Fig. 1a. The bipartite nature of the dice lattice, which can
be envisaged as two merged triangular lattices, protects two
degenerate flat bands coexisting with four other dispersive bands.
Such a geometry can be realized using a few layers of transition-
metal oxides, dichalcogenides, and graphene. In the simplest
realization of the dice lattice involving three (111) layers of cubic
transition-metal oxides, such as in a SrTiO3/SrIrO3/SrTiO3 tri-
layer, the cubic symmetry is reduced to trigonal symmetry. The
strong spin-orbit coupling from the Ir4+ ion and the broken
inversion symmetry produces a Rashba spin-orbit coupling. In
the reduced D3d symmetry of the trilayer, the Rashba spin-orbit
coupling vectors lie in the plane parallel to the trilayer and have
opposite senses of rotation for the top and the bottom layers of
the three-coordination sites, surrounding the middle layer of six-
coordination sites, as shown in Fig. 1a by the black arrows. In the
presence of this Rashba spin-orbit coupling, the flat bands
become isolated from the dispersive bands. Repulsive interactions
in the flat bands then spontaneously generate ferro/ferri-magnetic
order on the Kramer’s pair of flat bands44,45, especially when they
are close to half filling, and split them into two nearly-flat bands
with Chern number C= ± 2, as shown in Fig. 1b. A local four-

fermion interaction, leading to an excitonic gap, may also gen-
erate two well-separated topological flat bands46.

Besides the topological origin of superconductivity in the flat
bands, superconductivity in the transition-metal oxide trilayer
can also be induced by doping SrTiO3

47,48, for example, by Nb.
Our calculations reveal that the superconducting state realized in
the dice-lattice topological flat bands, exhibits both singlet and
triplet pairings. Such a singlet-triplet mixing is allowed by broken
inversion symmetry in this oxide trilayer. Using symmetry ana-
lysis, we find that the possible nearest-neihgbor pairing channels
allowed in this lattice geometry are dxy, dx2�y2 , px and py. The
nearest-neighbor pairing amplitudes were found to be complex
numbers, indicating the chiral nature of the induced topological
superconducting phase. Besides finding corner MBS, supporting
the second-order nature of the topological superconducting
phase, we perform an analysis of the quasiparticle excitation gap
in momentum space and identify the parameter regime where the
excitation gap becomes finite, that characterizes the induced
topological superconducting phase in the topologically-non-
trivial flat bands.

The dice lattice has been studied for decades for its intriguing
electronic properties49–52. It is a special case of the α � τ

3
lattice

which interpolates between the dice lattice (α= 0, pseudospin 1)
and the honeycomb lattice (α= 1, pseudospin 1/2)53. By chan-
ging the hopping parameter α, the orbital susceptibility can be
changed continuously from dia to paramagnetic54. It is also
possible to transform the honeycomb lattice into the dice lattice,
and vice versa, in an experimentally-simulated ultracold atomic
gas platform55. Also, the results presented here are relevant to
possible topological superconducting phases in twisted bilayer/
multilayer graphene56.

Results
Model and set up. The electron pairing in the topological flat
bands of the dice lattice, realizable in a transition-metal oxide
trilayer as discussed above, can be described by the following
tight-binding Hamiltonian

H ¼ � t ∑
hiα;jβi;σ

ðcyiασcyjβσ þH:c:Þ � μ ∑
i;α;σ

cyiασc
y
iασ

� λ ∑
hiα;jβi;σ;σ 0

ði½D̂ij � σ�
σσ 0

αβ
cyiασc

y
jβσ0 þH:c:Þ

� Bz ∑
i;α;σ;σ 0

ð½σz�σσ
0
cyiασc

y
iασ 0 þH:c:Þ

� U0 ∑
i;α

niα"niα# �
U1

2
∑

i;j;α;β;σ;σ 0
niασnjβσ 0 ;

ð1Þ

where t is the electron hopping amplitude, i and j are indices of
different unit cells, α and β represent indices of the three
inequivalent sites within a unit cell, σ= ↑, ↓ labels the electron
spin projection along the z axis, 〈〉 represents nearest-neighbor
(NN) sites, μ is the chemical potential, λ is the strength of the
Rashba spin-orbit coupling, D̂ij is the unit vector between unit
cells i and j, σ represents the Pauli matrices, Bz is the strength of
the magnetization field, the last two terms represent the onsite
and non-local density-density attractive interactions with U0 and
U1 as the strengths of the interactions, respectively, and niασ ¼
cyiασciασ is the electron density at the unit cell i, site α and spin σ.
The interaction terms are treated at the mean-field level (see
Methods section for details) and we obtain pairing amplitudes in
different pairing channels as order parameters. For the self-
consistent determination of the pairing amplitudes, we solve the
Bogoliubov-de Gennes (BdG) equations, derived by performing
the unitary transformation ciασ ¼ ∑nu

n
iασγ

y
n þ vn�iασγ

y
n on the

Hamiltonian (1), where γyn is a fermionic annihilation operator in
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the nth eigenstate, uniασ and vniασ are respectively the quasi-particle
and quasi-hole amplitudes. We use, throughout this paper, lattice
spacing a= 1, hopping energy t= 1, and attractive potentials
U0= 2t and U1=U0/3. We verified that a different choice for U0

and U1 does not change the conclusions presented here because
the pairing amplitudes are calculated self-consistently. The triplet
pairing amplitude is generated dynamically in the presence of
Rashba spin-orbit coupling (broken inversion symmetry) and
magnetic field (broken time-reversal symmetry)57,58. Alternate
routes to obtain spin-triplet topological pairing in similar systems
include forward electron-phonon scattering which also suggests a
robust equal-spin pairing59.

Corner-localized MBS. We investigate the emergence of the
zero-energy MBS by inspecting the quasiparticle spectrum,
obtained by numerically solving the Hamiltonian (1) on a real
lattice with open boundary conditions, while varying the che-
mical potential μ. This procedure is repeated for many values of
λ and Bz, to search for signatures of the MBS in the quasiparticle
spectrum. As shown in Fig. 2a, at (λ, Bz)= (0.1t, 0.26t) and
within the range −0.3t ≲ μ ≲− 0.15t, two pairs of lowest-energy
quasiparticle states remain close to zero energy while other low-
energy levels move away towards higher energies, thus creating
an energy gap. This energy gap provides topological protection
to the zero-energy MBS, preventing them from hybridizing with
the higher-energy ordinary quasiparticle states, in the presence
of a local potential fluctuation. This energy gap, therefore, can
also distinguish the corner MBS from other zero-energy non-
Majorana states. To study the real-space localization of these
zero-energy MBS in the two-dimensional dice lattice, in Fig. 2b,
c we plot the local density of states, obtained via ρðrÞ ¼
∑α;σðjuniασ j2 þ vniασ j2Þ with the index n is taken to be the lowest-
positive energy eigenstate. We use two values for the chemical
potential: μ=− 0.2t, where the zero-energy states appear with a
topological energy gap, and μ=− 0.1t, where the lowest-energy
states are away from zero energy. At μ=− 0.2t, the lowest-
energy eigenstate is localized at the four lattice corners, while at
μ=− 0.1t it is distributed inside the bulk. The corner-localized
zero-energy states provide a strong indication of the appearance

of the MBS, and hence of the induced second-order topological
superconducting phase. An alternate route to obtain the corner
MBS is to realize a second-order spin liquid phase60,61; we,
however, restrict our discussions here to the case of second-
order topological superconductivity. For lattices with a sub-
lattice degree of freedom, such as dice, Lieb and kagomé lattices,
the corner MBS can sensitively depend on the boundary ter-
mination as it can break some spatial symmetry6,62. It is inter-
esting to note that the MBS at the diagonally-opposite lattice
corners in our dice lattice are symmetric; this is because the
opposite corners are related via mirror symmetry. It is, in fact,
this mirror symmetry that protects the corner MBS in the dice
lattice. In experimental realizations of these corner MBS, sam-
ples must be sufficiently clean so that quenched disorder does
not damage the pairing and the subtle topological properties
discussed here.

Pairing symmetry. The dice lattice has sites with coordination
number both three and six, and this feature distinguishes it from the
triangular and hexagonal lattices. The presence of these two types of
sites determines the pairing symmetry in the superconducting state.
The Rashba spin-orbit coupling also enforces its symmetry in the
superconducting pairing. From the character table, shown in
Table 1, one can notice that in this two-dimensional D3d crystalline
environment with broken both inversion symmetry (due to Rashba
spin-orbit coupling) and time-reversal symmetry (due to the
induced magnetization), the possible pairing symmetries arise from
the Eg {dxy, dx2�y2 } (singlet pairing), and Eu {px, py} (triplet pairing)
irreducible representations.

These possible pairing channels are shown schematically in
Fig. 3. Mixing of the singlet and triplet components is allowed by
the broken structural inversion symmetry in the discussed oxide
trilayers57. Therefore, a linear combination of these four types of
pairing symmetry is stabilized. Figure 4 shows the profiles of the
pairing amplitudes on the dice lattice at the same set of
parameters where the corner MBS are found. The imaginary
components of the nearest-neighbor (NN) pairing amplitudes are
nonzero, implying a chiral mixed-parity topological super-
conducting state. The real part of the onsite singlet pairing

C= −2
C= 2

a b

x
y

a1
2

3

Fig. 1 Majorana corner states and topological flat bands in the dice lattice. a Schematic description of the corner-localized Majorana bound states on the
Dice lattice with open boundaries in the second-order topological superconducting phase. There are three inequivalent sites in the unit cell, shown by the
dashed lines. The triangles denote three-coordination sites and the hexagrams denote six-coordination sites. The black arrows surrounding the six-
coordination site (middle layer) represent the vectors of the Rashba spin-orbit coupling, with clockwise sense of rotation for the upper triangles (bottom
layer) and counter-clockwise for the lower triangles (top layer). b Electronic bands of the dice lattice in the presence of a spin-orbit coupling and a
magnetic field, showing the nearly-flat topological bands with Chern number C= ± 2, close to the Fermi level. The topological superconducting phase is
obtained by populating the lower topological flat band at the Fermi level.
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amplitude Re(Δs;On
i ) (Fig. 4a) clearly reveals a difference between

the three and six coordination sites. The imaginary part of the
onsite singlet pairing amplitude Im(Δs;On

i ) (Fig. 4b) vanishes
inside the bulk as expected, but it has a small finite value at the

edges only in the presence of a finite Rashba spin-orbit coupling.
While the onsite singlet pairing amplitude Re(Δs;On

i ) at the six-
coordination sites is slightly smaller than that at the three-
coordination sites, the NN singlet pairing amplitude Re(Δs;NN

i )

a b

c μ/t = − 0.1

μ/t = − 0.2

Fig. 2 Emergence of corner Majorana bound states (MBS). a Quasiparticle spectrum of a dice lattice of size 32 × 32 with open boundary conditions, with
varying chemical potential μ, revealing the range −0.3t≲ μ≲− 0.15t, where two pairs of low-energy eigenstates come close to zero energy, while other
eigenstates move to higher energies, creating a topological energy gap that protects the MBS. b, c Plots of the local density of states ρ(r) (in arbitrary units)
in the topological superconducting phase (μ=− 0.2t) and in the trivial superconducting phase (μ=− 0.1t). Other parameters: Rashba spin-orbit coupling
strength λ= 0.1t, external magnetic field amplitude Bz= 0.26t, and hopping energy t= 1. In b, the localization of the MBS at the lattice corners indicates the
second-order nature of the topological superconducting phase.

Table 1 Character table for the D3d point group.

D3d E 2C3 3C0
2 I 2S6 3σd linear functions, rotations quadratic functions

A1g +1 +1 +1 +1 +1 +1 − x2+ y2, z2

A2g +1 +1 −1 +1 +1 −1 Rz −
Eg +2 −1 0 +2 −1 0 Rx, Ry x2-y2, xy, xz, yz
A1u +1 +1 +1 −1 −1 −1 − −
A2u +1 +1 −1 −1 −1 +1 z −
Eu +2 −1 0 −2 +1 0 x, y −

g and u represent, respectively, the symmetric and anti-symmetric wave functions with respect to the inversion center.

dxy

Δ

Δ

−Δ
−Δ

0
0

dx2−y2

Δ/2

Δ/2

Δ/2
Δ/2

−
Δ

−
Δ

px

Δ

−Δ

−Δ

Δ

0
0

py

0

0

0

0

Δ
−

Δ

Fig. 3 Pairing symmetry in the dice lattice. Possible pairing symmetries around a six-coordination site in the dice lattice with Rashba spin-orbit coupling
and induced magnetization. Δ is the pairing amplitude used for the illustration of the amplitudes along different neighbors.
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(Fig. 4c) shows the opposite behavior. On the other hand, the
imaginary part of the NN singlet pairing amplitude Im(Δs;NN

i )
(Fig. 4d), at the three and six -coordination sites are of different
magnitudes and signs. The real part of the NN equal-spin triplet
pairing amplitude Re(Δt;NN

i;σσ ) (Fig. 4e) also has a larger value at the
six-coordination sites than the three-coordination ones, while its
imaginary part Im(Δt;NN

i;σσ ) (Fig. 4f) vanishes at the three-
coordination sites. The real part of the NN opposite-spin triplet

pairing amplitude Re(Δt;NN
i;"# ) (Fig. 4g) is an order of magnitude

smaller than the equal-spin triplet pairing amplitude and it
vanishes completely at the six-coordination sites. The imaginary
part Im(Δt;NN

i;"# ) (Fig. 4h) vanishes at all sites except those near the
boundaries. The slight variation in the pairing amplitudes near
the corners and edges of the lattice is due to the considered open
boundary conditions. The above results confirms that odd-parity,
equal-spin pairing in the triplet channel is favored over the

Fig. 4 Real-space profile of pairing amplitudes. Real and imaginary parts of the pairing amplitudes for all possible pairing channels: a, b onsite singlet,
c, d nearest-neighbor (NN) singlet, e, f NN equal-spin (↑↑) triplet, and g, h NN opposite-spin triplet, on a dice lattice of size 16 × 16 with open boundary
conditions. Parameters used: Rashba spin-orbit coupling strength λ= 0.1t, external magnetic field amplitude Bz= 0.26t, chemical potential μ=− 0.2t, and
hopping energy t= 1.
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opposite-spin one due to parity fluctuations in the presence of
Rashba spin-orbit coupling and a time-reversal symmetry-break-
ing Zeeman exchange field63.

Topological superconducting transition. The transition to the
second-order topological superconducting phase can be under-
stood by inspecting the quasiparticle band dispersion in
momentum space, obtained by diagonalizing the following BdG
Hamiltonian at wavevector k≡ (kx, ky)

HBdGðkÞ ¼ Ψy
k Ψ�k

� � He HΔ

H�
Δ Hh

� �
Ψk

Ψy
�k

 !
; ð2Þ

where Ψk ¼ ½ck1"; ck2"; ck3"; ck1#; ck2#; ck3#�T ; 1, 2, 3 denote the
three inequivalent sites within a unit cell; He, Hh and HΔ are
the matrices representing, respectively, the electron, the hole, and
the pairing sectors of the Hamiltonian, described in the Methods
section. We show the quasiparticle spectrum, in Fig. 5a, b, at two
values of the magnetic field, in the vicinity of the parameter
regime in which the corner MBS were found in the above real-
space analysis. The two lowest-energy pairs of the quasiparticle
bands close the gap near the K point along the Γ-K direction for
most of the parameter regime, as shown in Fig. 5a for Bz= 0.1t.
However, a small gap is opened, indicating possible topological
superconducting transition, when the field is increased, as shown
in Fig. 5b for Bz= 0.26t. We, therefore, use the quasiparticle
excitation gap Eg=min(E1(k)), defined as the minimum of the
1st positive (or negative) quasiparticle band, as a diagnostic tool
to locate the topological superconducting state. In Fig. 5c, d, we
show this excitation gap Eg in the plane of μ and Bz, for two values

of the Rashba spin-orbit coupling strength λ. The plots show the
appearance of a well-defined parameter regime, bounded by two
critical values of Bz or μ, with a finite Eg. The corner MBS were
found in the above analysis in this parameter regime with a small
quasiparticle excitation gap. The identification of a topological
invariant for the discussed second-order topological super-
conductivity in the dice lattice requires careful consideration of
the available symmetries and the fractional charges at the lattice
corners, as derived for higher-order topological insulating
systems64; we leave such a possibility for future studies.

Conclusion
To summarize, we showed that topological flat bands with Chern
number 2 in the dice lattice with attractive interaction among
electrons harbor a second-order topological superconducting
phase. A signature of this exotic topological phase is revealed by
the presence of the MBS at the lattice corners. Analogies between
the topological superconductivity in flat bands, as found here,
and the quantum-Hall insulator/superconductor interfaces can be
drawn. Theoretically, it is known that a quantum Hall state with
Chern number 1, in proximity to a fully gapped s-wave super-
conductor, generates a topological first-order superconducting
phase65,66. Likewise, the fractionalized MBS, i.e. some realizations
of the parafermions, have been proposed in fractional quantum
Hall states when in proximity to an s-wave superconductor67–69.
These findings establish a close connection between the topology
of the normal state and the nature of the induced topological
superconductivity. Topological flat bands with higher Chern
numbers are found not only in the dice lattice, but also in kagomé
and Lieb lattices70,71. Other than the examples of a few-layer

a b

c d

λ = 0.1t λ = 0.2t

λ = 0.1t

Bz = 0.1t

μ = − 0.2t
λ = 0.1t

Bz = 0.26t

μ = − 0.2t

Fig. 5 Quasiparticle bands and excitation energy gap. a, b Quasiparticle bands along the momentum path Γð0;0Þ � Kð 4π
3
ffiffi
3

p ;0Þ �Mð πffiffi
3

p ; π3Þ � Γ, in the trivial
phase (zero excitation gap at a magnetic field strength Bz= 0.1t) and topological superconducting phase (a finite excitation gap at Bz= 0.26t).
c, d Excitation gap Eg, shown by the colorbar, plotted in the plane of Bz and chemical potential μ at two values of the Rashba spin-orbit coupling strengths
λ= 0.1t, λ= 0.2t. The hopping energy is t= 1.
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graphene and a transition-metal-oxide trilayer, another candidate
compound is CsV3Sb572–74, where lattice geometry, flat-band
topology and superconductivity can produce Majorana states
such as those discussed here. Hence, we expect that future
research will unveil topological superconductivity in a variety of
compounds that exhibit topological flat bands. Furthermore, the
superconducting transition temperature is proportional to the
density of states at the Fermi level which is large for these flat-
band systems. Therefore, when looking forward, topological flat-
bands with higher Chern numbers provide an opportunity to
search for higher-order topological superconductivity at high
temperatures.

Methods
Calculation of pairing amplitudes. The attractive interaction
terms in the Hamiltonian (1) are decomposed into different
pairing channels (singlet and triplet, onsite and nearest-neighbor)
and the resulting mean-field Hamiltonian for these two interac-
tion terms is given by

HMF ¼∑
i;α
ðΔαα

ii c
y
iα"c

y
iα# þ H.c. Þ

þ 1
2

∑
hiji;α;β;σ;σ 0

ðΔαβ
ijσσ 0c

y
iασc

y
jβσ0 þ H.c. Þ

þ ∑
i;α;σ

ΓHiiσc
y
iασciασ þ

1
2

∑
hiji;α;β;σ

ΓHij c
y
iασciασ

� 1
2

∑
hiji;α;β;σ;σ 0

ΓFijσσ 0c
y
iασcjβσ0 ;

ð3Þ

where the on-site and off-site pairing amplitudes Δαα
ii , Δ

αβ
ijσσ 0 , the

on-site Hartree potential ΓHiiσ , the off-site Hartree potential ΓHij and

the Fock potential ΓFijσσ 0 are obtained self-consistently via the
following relations

Δαα
ii ¼ �U0hciα#ciα"i

Δαβ
ijσσ 0 ¼ �U1

2
hciασcjβσ 0 i

ΓHiiσ ¼ �U0hcyiασciασi
ΓHij ¼ �U1 ∑

σ
hcyjασcjασi

ΓFijσσ 0 ¼ �U1

2
hcyiασcjβσ 0 i

ð4Þ

The total Hamiltonian is then diagonalized using the BdG
transformation ciασ ¼ ∑nu

n
iασγn þ vn�iασγ

y
n, where γn is a fermionic

annihilation operator at the nth eigenstate, uniασ and vniασ are the
quasi-particle and quasi-hole amplitudes, respectively. The quasi-
particle and quasi-hole amplitudes are obtained by solving the BdG
equations ∑jHijψ

n
j ¼ ϵnψ

n
i , where ψn

i ¼ ½uniα"; uniα#; vniα"; vniα#�T
with uniα" ¼ ½uni1"; uni2"; uni3"� and similarly for other components,
while ϵn is the energy eigenvalue of the nth eigenstate. The self-
consistency iterations continue until all the pairing amplitudes
converge at all lattice sites, within a tolerance of 10−8. Finally, the
following order parameters were calculated from the converged

eigenvalues and eigenvectors:

On-site singlet:Δs;On
i ¼ �U0hciα#ciα"i

NN singlet:Δs;NN
i ¼ � U1

2Nn
∑
hjαβi

hciα#cjβ" � ciα"cjβ#i

NN equal-spin triplet:Δt;NN
i;σσ ¼ �U1

Nn
∑
hjαβi

hciασcjβσi

NN opposite-spin triplet:

Δt;NN
i;"# ¼ � U1

2Nn
∑
hjαβi

hciα#cjβ" þ ciα"cjβ#i

ð5Þ
where Nn denotes the number of NN.

Momentum-space Hamiltonian. The Hamiltonian (2) is
expressed in the basis Ψk ¼ ½ck1"; ck2"; ck3"; ck1#; ck2#; ck3#�T ,
where 1, 2, 3 denote the three inequivalent sites within a unit cell,
and is given by

HeðkÞ ¼

�Bz � μ �tγ�k 0 0 �iλγ�kþ 0

�tγk �Bz � μ �tγ�k iλγk� 0 iλγ�kþ
0 �tγk �Bz � μ 0 �iλγk� 0

0 �iλγ�k� 0 Bz � μ �tγ�k 0

iλγkþ 0 iλγ�k� �tγk Bz � μ �tγ�k
0 �iλγkþ 0 0 �tγk Bz � μ

0
BBBBBBBB@

1
CCCCCCCCA
;

ð6Þ
where γk ¼ 1 þ eik1 þ eik2 , γk ± ¼ 1þ eik1 ± 2π=3 þ eik2 ± 4π=3,
k1,2= k ⋅ e1,2, and e1,2 are the lattice translational vectors, given by
e1 � ð ffiffiffi

3
p

; 0Þ and e2 � ð ffiffiffi
3

p
=2; 3=2Þ. The topological flat bands

in Fig. 1b are obtained by diagonalizing HeðkÞ at t= 1, μ= 0,
λ= 0.3t, and Bz= 0.4t. The hole part of the Hamiltonian (2) is
given by HhðkÞ ¼ ½�Heð�kÞ�T , and the pairing part is given by

HΔðkÞ ¼

0 �Δ""
12 ð�kÞ 0 Δs

11 �Δs=t
12 ð�kÞ 0

�Δ""
12 ðkÞ 0 Δ""

32 ðkÞ �ζΔs=t
12 ðkÞ Δs

22 �ζΔs=t
32 ðkÞ

0 �Δ""
32 ð�kÞ 0 0 �Δs=t

32 ð�kÞ Δs
33

�Δs
11 ζΔs=t

12 ð�kÞ 0 0 �Δ##
12 ð�kÞ 0

Δs=t
12 ðkÞ �Δs

22 Δs=t
32 ðkÞ �Δ##

12 ðkÞ 0 Δ##
32 ðkÞ

0 ζΔs=t
32 ð�kÞ �Δs

33 0 �Δ##
32 ð�kÞ 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

;

ð7Þ

Fig. 6 Notation for the coordinates in the pairing terms in Eq. (8). Red
and blue dots represent, respectively, the six and three -coordination sites
of the dice lattice.
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where Δs
αα (α= 1, 2, 3) represents the onsite singlet pairing

amplitude at site index α, ζ=+ 1(− 1) for singlet (triplet) pair-
ing, Δ12(k) and Δ32(k) are the NN pairing amplitudes and
expressed below.

Δ12ðkÞ ¼ Δr;1;r;2 þ Δrþê1;1;r;2
e�ik1 þ Δrþê2;1;r;2

e�ik2

Δ32ðkÞ ¼ Δr;3;r;2 þ Δr�ê1;3;r;2
eik1 þ Δr�ê2;1;r;2

eik2
ð8Þ

Here the real-space pairing amplitudes are defined based on
the NN hopping between the three inequivalent sites, as described
in Fig. 6.

Based on the above notation, and pairing symmetries described
in Fig. 3, one can collect the amplitudes for dxy, dx2�y2 , px and
py -wave pairing channels. These are given by

dxy-wave:

Δ12ðkÞ ¼ Δdxy
ð1� e�ik1 Þ

Δ32ðkÞ ¼ Δdxy
ð1� eik1 Þ ð9Þ

dx2�y2 -wave:

Δ12ðkÞ ¼
Δd

x2�y2

2 ð1þ e�ik1 � 2e�ik2 Þ

Δ32ðkÞ ¼
Δd

x2�y2

2 ð1þ eik1 � 2eik2 Þ
ð10Þ

px-wave:

Δ12ðkÞ ¼ Δpx
ð1þ e�ik1 Þ

Δ32ðkÞ ¼ Δpx
ð1� eik1 Þ ð11Þ

py-wave:

Δ12ðkÞ ¼ Δpy
ð1þ e�ik2 Þ

Δ32ðkÞ ¼ Δpy
ð1� eik2 Þ ð12Þ

Taking cue from the results of the real-space analysis,
presented in Fig. 4, at parameters λ= 0.1t, Bz= 0.26t, and
μ=− 0.2t, we use the following set of gap parameters
Δs
11 ¼ Δs

33 ¼ 0:4t, Δs
22 ¼ 0:2t, Δdxy

¼ Δdx2�y2
¼ 0:1t, Δpx

¼ Δpy
¼

0:1t (for ↑↑), Δpx
¼ Δpy

¼ 0:02t (for ↓↓). All these pairing

amplitudes are used additively to construct the pairing Hamilto-
nian HΔðkÞ.

Data availability
All data obtained from numerical calculations have been presented in the paper. Other
data are available from the corresponding author on reasonable request.

Code availability
Simulation codes are available from the corresponding author upon reasonable request.

Received: 25 October 2022; Accepted: 21 August 2023;

References
1. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346

(2018).
2. Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W.

Reflection-symmetric second-order topological insulators and
superconductors. Phys. Rev. Lett. 119, 246401 (2017).

3. Ezawa, M. Higher-order topological insulators and semimetals on the
breathing kagomé and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018).

4. Khalaf, E. Higher-order topological insulators and superconductors protected
by inversion symmetry. Phys. Rev. B 97, 205136 (2018).

5. Franca, S., van den Brink, J. & Fulga, I. C. An anomalous higher-order
topological insulator. Phys. Rev. B 98, 201114 (2018).

6. Geier, M., Trifunovic, L., Hoskam, M. & Brouwer, P. W. Second-order
topological insulators and superconductors with an order-two crystalline
symmetry. Phys. Rev. B 97, 205135 (2018).

7. Trifunovic, L. & Brouwer, P. W. Higher-order bulk-boundary correspondence
for topological crystalline phases. Phys. Rev. X 9, 011012 (2019).

8. Li, T., Geier, M., Ingham, J. & Scammell, H. D. Higher-order topological
superconductivity from repulsive interactions in kagomé and honeycomb
systems. 2D Mater. 9, 015031 (2021).

9. Ghosh, A. K., Nag, T. & Saha, A. Hierarchy of higher-order topological
superconductors in three dimensions. Phys. Rev. B 104, 134508 (2021).

10. Ahn, J. & Yang, B.-J. Higher-order topological superconductivity of spin-
polarized fermions. Phys. Rev. Research 2, 012060 (2020).

11. Tiwari, A., Jahin, A. & Wang, Y. Chiral dirac superconductors: second-order
and boundary-obstructed topology. Phys. Rev. Res. 2, 043300 (2020).

12. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44,
131 (2001).

13. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-
Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80,
1083–1159 (2008).

14. Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological
quantum computation. npj Quantum Inf. 1, 15001 (2015).

15. Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys.
Rev. X 6, 031016 (2016).

16. Elliott, S. R. & Franz, M. Colloquium: Majorana fermions in nuclear, particle,
and solid-state physics. Rev. Mod. Phys. 87, 137 (2015).

17. Mohanta, N. & Taraphder, A. Topological superconductivity and Majorana
bound states at the LaAlO3/SrTiO3 interface. Europhys. Lett. 108, 60001
(2014).

18. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a
topological phase transition in semiconductor-superconductor
heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

19. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-
semiconductor nanowire devices. Science 336, 1003 (2012).

20. Rokhinson, L. P., Liu, X. & Furdyna, J. K. The fractional a.c. josephson effect
in a semiconductor–superconductor nanowire as a signature of Majorana
particles. Nat. Phys. 8, 795 (2012).

21. Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-
nanowire system. Science 354, 1557 (2016).

22. Desjardins, M. M. et al. Synthetic spin–orbit interaction for Majorana devices.
Nat. Mater. 18, 1060 (2019).

23. Mohanta, N. et al. Electrical control of Majorana bound states using magnetic
stripes. Phys. Rev. Appl. 12, 034048 (2019).

24. Mohanta, N., Okamoto, S. & Dagotto, E. Skyrmion control of Majorana states
in planar Josephson junctions. Comm. Phys. 4, 163 (2021).

25. Herbrych, J., Środa, M., Alvarez, G., Mierzejewski, M. & Dagotto, E.
Interaction-induced topological phase transition and Majorana edge states in
low-dimensional orbital-selective Mott insulators. Nat. Commun. 12, 2955
(2021).

26. Song, Z., Fang, Z. & Fang, C. (d− 2)-dimensional edge states of rotation
symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).

27. Wang, Y., Lin, M. & Hughes, T. L. Weak-pairing higher order topological
superconductors. Phys. Rev. B 98, 165144 (2018).

28. Pahomi, T. E., Sigrist, M. & Soluyanov, A. A. Braiding Majorana corner modes
in a second-order topological superconductor. Phys. Rev. Res. 2, 032068
(2020).

29. Zhang, S.-B. et al. Topological and holonomic quantum computation based on
second-order topological superconductors. Phys. Rev. Res. 2, 043025 (2020).

30. Kheirkhah, M., Yan, Z., Nagai, Y. & Marsiglio, F. First- and second-order
topological superconductivity and temperature-driven topological phase
transitions in the extended Hubbard model with spin-orbit coupling. Phys.
Rev. Lett. 125, 017001 (2020).

31. Yan, Z., Song, F. & Wang, Z. Majorana corner modes in a high-temperature
platform. Phys. Rev. Lett. 121, 096803 (2018).

32. Wang, Q., Liu, C.-C., Lu, Y.-M. & Zhang, F. High-temperature Majorana
corner states. Phys. Rev. Lett. 121, 186801 (2018).

33. Volpez, Y., Loss, D. & Klinovaja, J. Second-order topological
superconductivity in π-junction Rashba layers. Phys. Rev. Lett. 122, 126402
(2019).

34. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene
superlattices. Nature 556, 43 (2018).

35. Sayyad, S. et al. Pairing and non-fermi liquid behavior in partially flat-band
systems: Beyond nesting physics. Phys. Rev. B 101, 014501 (2020).

36. Peri, V., Song, Z.-D., Bernevig, B. A. & Huber, S. D. Fragile topology and flat-
band superconductivity in the strong-coupling regime. Phys. Rev. Lett. 126,
027002 (2021).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01356-0

8 COMMUNICATIONS PHYSICS |           (2023) 6:240 | https://doi.org/10.1038/s42005-023-01356-0 | www.nature.com/commsphys

www.nature.com/commsphys


37. Heikkilä, T. T. & Volovik, G. E. Flat bands as a route to high-temperature
superconductivity in graphite. Spring. Ser. Mater. Sci. 244, 123 (2016).

38. Aoki, H. Theoretical possibilities for flat band superconductivity. J. Supercond.
Nov. Magn. 33, 2341 (2020).

39. Mahyaeh, I., Köhler, T., Black-Schaffer, A. M. & Kantian, A. Superconducting
pairing from repulsive interactions of fermions in a flat-band system. Phys.
Rev. B 106, 125155 (2022).

40. Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat.
Commun. 6, 8944 (2015).

41. Xie, F., Song, Z., Lian, B. & Bernevig, B. A. Topology-bounded superfluid
weight in twisted bilayer graphene. Phys. Rev. Lett. 124, 167002 (2020).

42. Sticlet, D., Seabra, L., Pollmann, F. & Cayssol, J. From fractionally charged
solitons to Majorana bound states in a one-dimensional interacting model.
Phys. Rev. B 89, 115430 (2014).

43. Verma, N., Hazra, T. & Randeria, M. Optical spectral weight, phase stiffness,
and Tc bounds for trivial and topological flat band superconductors. Proc.
Natl. Acad. Sci. USA. 118, e2106744118 (2021).

44. Wang, F. & Ran, Y. Nearly flat band with chern number C= 2 on the dice
lattice. Phys. Rev. B 84, 241103 (2011).

45. Soni, R., Kaushal, N., Okamoto, S. & Dagotto, E. Flat bands and ferrimagnetic
order in electronically correlated dice-lattice ribbons. Phys. Rev. B 102, 045105
(2020).

46. Gorbar, E. V., Gusynin, V. P. & Oriekhov, D. O. Gap generation and flat band
catalysis in dice model with local interaction. Phys. Rev. B 103, 155155 (2021).

47. Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in
semiconducting SrTiO3. Phys. Rev. Lett. 12, 474 (1964).

48. Koonce, C. S., Cohen, M. L., Schooley, J. F., Hosler, W. R. & Pfeiffer, E. R.
Superconducting transition temperatures of semiconducting SrTiO3. Phys.
Rev. 163, 380 (1967).

49. Horiguchi, T. & Chen, C. C. Lattice Green’s function for the diced lattice. J.
Math. Phys. 15, 659 (1974).

50. Sutherland, B. Localization of electronic wave functions due to local topology.
Phys. Rev. B 34, 5208 (1986).

51. Vidal, J., Mosseri, R. & Douçot, B. Aharonov-Bohm cages in two-dimensional
structures. Phys. Rev. Lett. 81, 5888 (1998).

52. Vidal, J., Butaud, P., Douçot, B. & Mosseri, R. Disorder and interactions in
Aharonov-Bohm cages. Phys. Rev. B 64, 155306 (2001).

53. Illes, E. & Nicol, E. J. Magnetic properties of the α− T3 model: Magneto-optical
conductivity and the Hofstadter butterfly. Phys. Rev. B 94, 125435 (2016).

54. Raoux, A., Morigi, M., Fuchs, J.-N., Piéchon, F. & Montambaux, G. From dia-
to paramagnetic orbital susceptibility of massless fermions. Phys. Rev. Lett.
112, 026402 (2014).

55. Rizzi, M., Cataudella, V. & Fazio, R. Phase diagram of the Bose-Hubbard
model with τ3 symmetry. Phys. Rev. B 73, 144511 (2006).

56. Xu, C. & Balents, L. Topological superconductivity in twisted multilayer
Graphene. Phys. Rev. Lett. 121, 087001 (2018).

57. Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin
degeneracy: Mixed singlet-triplet state. Phys. Rev. Lett. 87, 037004 (2001).

58. Mohanta, N., Kampf, A. P. & Kopp, T. Supercurrent as a probe for topological
superconductivity in magnetic adatom chains. Phys. Rev. B 97, 214507 (2018).

59. Li, S., Hu, L.-H., Zhang, R.-X. & Okamoto, S. Topological superconductivity
from forward phonon scatterings. Comm. Phys. 6, 235 (2023).

60. Dwivedi, V., Hickey, C., Eschmann, T. & Trebst, S. Majorana corner modes in
a second-order Kitaev spin liquid. Phys. Rev. B 98, 054432 (2018).

61. Wang, H. & Principi, A. Majorana edge and corner states in square and
kagomé quantum spin-32 liquids. Phys. Rev. B 104, 214422 (2021).

62. Kheirkhah, M., Zhu, D., Maciejko, J. & Yan, Z. Corner- and sublattice-
sensitive Majorana zero modes on the kagomé lattice. Phys. Rev. B 106,
085420 (2022).

63. Kozii, V. & Fu, L. Odd-parity superconductivity in the vicinity of inversion
symmetry breaking in spin-orbit-coupled systems. Phys. Rev. Lett. 115, 207002
(2015).

64. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric
multipole insulators. Science 357, 61 (2017).

65. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Chiral topological superconductor
from the quantum hall state. Phys. Rev. B 82, 184516 (2010).

66. Lesser, O. & Oreg, Y. Universal phase diagram of topological superconductors
subjected to magnetic flux. Phys. Rev. Res. 2, 023063 (2020).

67. Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from
conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

68. Vaezi, A. Superconducting analogue of the parafermion fractional quantum
Hall states. Phys. Rev. X 4, 031009 (2014).

69. Santos, L. H. Parafermions in hierarchical fractional quantum Hall states.
Phys. Rev. Res. 2, 013232 (2020).

70. Soni, R. et al. Multitude of topological phase transitions in bipartite dice and
Lieb lattices with interacting electrons and Rashba coupling. Phys. Rev. B 104,
235115 (2021).

71. Okamoto, S., Mohanta, N., Dagotto, E. & Sheng, D. N. Topological flat bands
in a kagomé lattice multiorbital system. Commun. Phys. 5, 198 (2022).

72. Ortiz, B. R. et al. CsV3Sb5: A Z2 topological kagomé metal with a
superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

73. Zhao, H. et al. Cascade of correlated electron states in the kagomé
superconductor CsV3Sb5. Nature 599, 216–221 (2021).

74. Hu, Y. et al. Topological surface states and flat bands in the kagomé
superconductor CsV3Sb5. Sci. Bull. 67, 495–500 (2022).

Acknowledgements
This work was supported by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Materials Sciences and Engineering Division. N.M. acknowledges the
National Supercomputing Mission for providing computing resources of Param Ganga at
the Indian Institute of Technology Roorkee, which is implemented by C-DAC and
supported by the Ministry of Electronics and Information Technology and Department
of Science and Technology, Government of India.

Author contributions
N.M. planned the work, performed numerical calculations and wrote the manuscript
with inputs from all coauthors. R.S. provided inputs in setting up the momentum-space
Hamitonian. S.O. provided inputs in the analysis of the topological superconducting
phase. E.D. provided inputs in the analysis of the interaction terms.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01356-0.

Correspondence and requests for materials should be addressed to Narayan Mohanta or
Satoshi Okamoto.

Peer review information Communications Physics thanks the anonymous reviewers for
their contribution to the peer review of this work. A peer review report is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01356-0 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:240 | https://doi.org/10.1038/s42005-023-01356-0 | www.nature.com/commsphys 9

https://doi.org/10.1038/s42005-023-01356-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys
www.nature.com/commsphys

	Majorana corner states on the dice lattice
	Results
	Model and set up
	Corner-localized MBS
	Pairing symmetry
	Topological superconducting transition

	Conclusion
	Methods
	Calculation of pairing amplitudes
	Momentum-space Hamiltonian

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




