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We report neutron scattering, pressure-dependent AC calorimetry, and AC magnetic susceptibility measure-
ments of triangular lattice NaYbSe2. We observe a continuum of scattering, which is reproduced by matrix
product simulations, and no phase transition is detected in any bulk measurements. Comparison to heat capacity
simulations suggest the material is within the Heisenberg spin liquid phase. AC Susceptibility shows a signifi-
cant 23 mK downturn, indicating a gap in the magnetic spectrum. The combination of a gap with no detectable
magnetic order, comparison to theoretical models, and comparison to other AYbSe2 compounds all strongly
indicate NaYbSe2 is within the quantum spin liquid phase. The gap also allows us to rule out a gapless Dirac
spin liquid, with a gapped Z2 liquid the most natural explanation.

A quantum spin liquid (QSL) is a state of matter first pre-
dicted by P. W. Anderson in 1973, wherein spins arranged in
a lattice exhibit a massively entangled and fluctuating ground
state [1]. One defining characteristic of QSLs is their frac-
tional excitations, which interact with each other through
emergent gauge fields [2, 3]. The potential for topologi-
cal protection from decoherence makes QSLs appealing plat-
forms for quantum technologies. However, despite decades
of searching and extensive theoretical work, no unambiguous
examples of a quantum spin liquid material have been found.

Anderson’s original prediction for a QSL state was the two-
dimensional triangular lattice antiferromagnet. With nearest-
neighbor exchange only, this system orders magnetically, but
a small antiferromagnetic second-nearest-neighbor exchange
J2 theoretically stabilizes a QSL phase [4–10]. Though the ex-
istence of this phase is well-accepted theoretically (although
not experimentally until now), it is not clear what kind of QSL
such a state would be. Proposals include a gapless U1 Dirac
QSL [6, 10–12], a valence bond crystal [13, 14], a gapped
Z2 QSL [4, 5, 15, 16], or a chiral spin liquid [17]. Because
numerical simulations are limited by finite size, theoretical re-
sults are ambiguous [13, 18]. The best (and perhaps only) way
to resolve this question would be to find a real material which
harbors the triangular lattice QSL ground state.
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Inelastic neutron scattering studies of triangular antifer-
romagnets with nearest-neighbor exchange have revealed
anomalous continuum scattering that cannot be explained by
semiclassical theories [19–21]. The measured single-magnon
dispersion was accurately reproduced using a Schwinger Bo-
son approach, where magnons are obtained as two-spinon
bound states [22, 23]. This suggests that these ordered mag-
nets are in close proximity to a gapped Z2 QSL as the decon-
fined Schwinger Boson phase. But an unambiguous measure-
ment of a material in the deconfined QSL phase has not been
reported.

A very promising class of materials is the Yb delafossites
AYbSe2 where A is an alkali metal [24–29]. These form ideal
triangular lattices of magnetic Yb3+, and appear to approxi-
mate the Heisenberg J2/J1 model [30], see Fig. 1. Of these,
CsYbSe2 and KYbSe2 have been observed to order magnet-
ically at zero field [28, 29]. However, following a trend in
the periodic table that a smaller A-site element enhances J2
and destabilizes order [30], no long-range magnetic order has
been observed in NaYbSe2 [24, 27], which makes it a prime
candidate for a QSL ground state. Importantly, the tunabil-
ity of these compounds means that the QSL phase can be ap-
proached systematically from magnetic order (Fig. 1). This
allows for greater confidence and rigor than studying a single
compound in isolation would.

Previous NaYbSe2 studies reported a diffuse neutron spec-
trum that was interpreted in terms of spinon Fermi surface ex-
citations from a QSL [27], but because of 3% Na site disorder
on those samples, it is not clear whether the magnetic order
and coherent excitations were destroyed by small amounts of

ar
X

iv
:2

40
6.

17
77

3v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

5 
Ju

n 
20

24

mailto:scheie@lanl.gov
mailto:ml10k@lanl.gov
mailto:jemoore@berkeley.edu
mailto:dtennant@utk.edu


2

a

.
/

 / 
order QSL

KY
bS

e
Cs

Yb
Se

Na
Yb

Se

b

c

RVB Chiral QSL

Candidate QSL phases  

VBS

FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 ≲ 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively different
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and diffuse spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120◦ magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy ∆ (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice effects the calcu-
lated spectra are gapped, and it is difficult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ≈ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ≈ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B ∥ a direction at 5 T, but not
for B ∥ c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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FIG. 2. Neutron scattering data on NaYbSe2. Panel a shows the triangular crystal structure and reciprocal space vectors, with hh vertical.
Panels b and c show neutron scattering in the hhℓ scattering plane, integrated over ℓ < 4.5 reciprocal lattice units (rlu) with incident neutron
energies Ei = 3.32 meV and 1.55 meV respectively. 12 K data have been subtracted as a background, see supplemental materials. Panel d
shows the scattering at K= (1/3, 1/3, 0) as a function of energy with Ei = 1.0 meV and 1.55 meV. To an energy resolution of 50 µeV, the
spectrum is gapless. Panel e shows the temperature-subtracted scattering at M= (1/2, 1/2, 0) with Ei = 3.32 meV, and it is unclear whether
the spectrum is gapped or gapless at M. Panels f-i show MPS simulated scattering of NaYbSe2 with varying levels of anisotropy. Note the
broadened signal due to finite size effects.
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FIG. 3. NaYbSe2 specific heat. Panel a shows ambient pressure specific heat, measured with both a 3He PPMS insert and the dilution
refrigerator (DR). In grey are the data from previous studies [25, 27, 33]. Panel b shows pressure dependent heat capacity. The low-temperature
upturn is an artifact of measuring in a pressure medium with finite thermal conductivity, but no pressure-induced magnetic ordering transition
is visible in the data. Panel c shows the magnetic specific heat of NaYbSe2 compared to KYbSe2 [28], with the temperature axis scaled by
kBJ1 for each compound. Panel d shows the theoretical calculated specific heat from TPQ (see text) as a function of J2 in units of J1. The
theoretical trend confirms that NaYbSe2 is closer to the QSL. Panel e shows the integrated entropy, revealing that both compounds converge
close to R ln(2).

magnetism still has a continuous rotation symmetry and simi-
lar physics is preserved.

However, the most important feature in susceptibility is the
low-field drop in susceptibility at 23 mK, shown in Fig 4b
and e. This drop occurs in both the B ∥ a and B ∥ c data.
Observing such a feature at such low temperatures is prima

facie evidence of high crystalline quality: any magnetic ran-
domness or disorder in the material must involve an energy
smaller than ∼ kBT = 2.2 µeV, or else such a feature would be
suppressed. Furthermore, there is no detectable frequency de-
pendence in either direction, shown in Fig. 4c and f, indicating
that it is not a spin-freezing transition. Rather, this indicates
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either a magnetic ordering transition, or a gap opening in the
magnetic excitations.

If the 23 mK susceptibility feature were a magnetic order-
ing transition, this would indicate that NaYbSe2 is extremely
close to a QSL phase, closer than any other triangular delafos-
site materials [30]. The order would be extremely subtle, as
the temperature 23 mK

J1/kB
≈ 1/280 means the amount of energy

available for any type of order is very small, i.e., the order pa-
rameter saturates to a tiny value, and the system is left mostly
fluctuating. However, the hypothesis of 23 mK magnetic or-
der is unlikely, for three reasons.

First, the isotropy: the drop in susceptibility is qualitatively
the same along a and c. The only difference at zero field
is a slightly higher peak temperature for H ∥ c at 24 mK.
Antiferromagnetic order (especially the coplanar order ex-
pected for NaYbSe2 with planar anisotropy) should produce
a very different response for the field along which the spins
order. Meanwhile, a gapped spectrum produces an isotropic
response, consistent with what is observed here.

Second, the magnitude: the drop in susceptibility is
more than 5% without background susceptibility subtracted,
whereas an ordering transition at such extremely low temper-
atures (in comparison to a ∼ 15 K bandwidth) would indicate
very weak order with an extremely small recovered entropy,
and a correspondingly weak signal in bulk properties. Indeed,
in the sister compound KYbSe2, despite a clear magnetic or-
der transition at 290 mK in heat capacity and neutron diffrac-
tion [28], the ordering feature in susceptibility is essentially
invisible (see Supplemental Fig. 11). If the NaYbSe2 shows
the same antiferromagnetic ordering and the ordering tem-
perature is an order of magnitude lower in temperature than
KYbSe2, we would expect a much weaker feature in suscep-
tibility. Instead we observe a very strong feature, which is
evidence for it being from a gapped spectrum. This abrupt
drop is also inconsistent with spin glass behavior, where the
ac susceptibility typically shows a frequency-dependent peak
and symmetric decrease both above and below the peak tem-
perature.

Third, fine-tuning: such a low transition temperature would
require the system to sit exactly on the boundary between the
QSL and AFM order. If we assume the system lies within
the 120◦ ordered phase, the dynamical exponent of the crit-
ical point would be z = 1 (linearly dispersing zero modes).
This implies that the effective dimension of the theory that de-
scribes the quantum phase transition is D = d + z = 3+ 1 = 4.
Since D = 4 is the upper critical dimension (Gaussian fixed
point), we expect the behavior of TN(J2/J1) to be mean field
like, i.e., TN ∝

√
Jc

2 − J2 where Jc
2 is the critical value of

J2. This means that the boundary becomes vertical in J2 vs
T at the lowest transition temperatures. A sharp magnetic or-
dering transition at 23 mK (less than 0.5% of the bandwidth)
would suggest a system so finely tuned to the boundary that
it is much easier to believe that the system lies within an ex-
tended gap phase.

Although the evidence points towards the susceptibility fea-
ture arising from a gap in the magnetic spectrum, an alter-
native explanation is nuclear-dipole ordering. We consider
this unlikely because (i) only 30% of Yb nuclei are magnetic,

which is below the percolation threshold (50%) for the trian-
gular lattice, and (ii) 23 mK is quite high for nuclear dipole or-
dering, which is typically less than 1 mK [37]. That said, there
is a noticeable nuclear Schottky anomaly in the heat capacity
data in Fig. 3, which indicates some splitting the energy levels
of nuclear moments. However, this does not necessarily indi-
cate static dipolar order: the 173Yb isotope (16% natural abun-
dance) has a nonzero electric quadrupolar moment [38] whose
energy levels will be split by an ionic electric field gradient at
the Yb site, producing a Schottky feature without static elec-
tronic magnetism. (Furthermore, if the ordering temperature
is 23 mK, a Schottky anomaly onset at 80 mK as in Ref. [25]
would be much too high.) Therefore, the most natural expla-
nation for this feature in susceptibility is a (2.1± 0.1)µeV gap
in the magnetic spectrum, which is estimated by fitting zero
field data with e−∆/T (see Supplemental Fig. 9). This is too
low to have been observed in the inelastic neutron experiment,
which could not resolve features below 50 µeV.

According to the generalized Lieb-Schultz-Mattis theorem,
the existence of a low-energy gap in the absence of a phase
transition for a translationally invariant S = 1/2 triangular an-
tiferromagnet implies that the ground state degeneracy must
have a topological origin [39, 40]. Because these materi-
als are known to be in close proximity to a QSL phase [30],
this indicates that NaYbSe2 lies within the QSL phase. This
was suggested by previous refinements of the second-nearets-
neighbor exchange [30], but the observation of a spin gap is
far more direct evidence.

A further piece of evidence in favor of QSL physics is that
the quantum critical effects seen in KYbSe2 are suppressed in
NaYbSe2. More specifically, the neutron spectra in KYbSe2
show energy temperature scaling [28] due to the proximity to
the quantum critical point (QCP) between the 120◦ and QSL
phase (see Figure 1). Quantum Fisher Information is a sen-
sitive gauge to quantum criticality [41, 42] and the elevated
value of nQFI = 3.4(2) [28] in KYbSe2 indicates the influ-
ence of the QCP. In contrast nQFI = 2.3(5) for NaYbSe2 (see
Supplementary Material) is consistent with the material be-
ing beyond the QCP (where nQFI should be a maximum) and
within the QSL phase where spectral intensity is more dis-
tributed [12, 18].

The existence of a low-energy gap allows us to rule out a
gapless U1 Dirac QSL [6, 10, 11], but there are at least three
competing theoretical options for gapped phases on the trian-
gular lattice: (i) a resonating valence bond (gapped Z2) liq-
uid, (ii) a valence bond crystal (VBC) [43, 44], or (iii) a chi-
ral QSL [45, 46]. The data we present here is insufficient
to fully resolve this debate, but the strong agreement with
the Schwinger boson representation of a condensed Z2 liquid
in KYbSe2 [28] indicates that the gap is from Z2 topologi-
cal order [15, 47]. Furthermore, the chiral QSL and valence
bond crystal break discrete symmetries (time-reversal and
crystalline, respectively) and hence have a finite-temperature
phase transition, whereas the Z2 liquid does not. We do not
observe the specific heat signature of either phase transition
down to 100 mK, and no susceptibility signatures between
25 mK and 400 mK. Moreover, if the small gap were caused
by a spin-Peierls instability of the U(1) Dirac spin liquid [44],



5

2.0

2.2

2.4

2.6

2.8
 (a

rb
. u

.)
a

471 Hz, = .  Oe

NaYbSe

0.94

0.96

0.98

1.00

/

b

200 Hz, = .  Oe

0 Oe
25 Oe
50 Oe
75 Oe
100 Oe 5.1

5.2

5.3

5.4

5.5

/ 
(a

rb
. u

.)

c

= , = .  Oe

137 Hz
200 Hz
471 Hz

0 5 10 15
 (T)

0.0

0.5

1.0

 (a
rb

. u
.)

d

200 Hz, = .  Oe

20 mK
47 mK
93 mK
150 mK

217 mK
280 mK
380 mK
420 mK

20 40 60
 (mK)

0.90

0.95

1.00

/

e

471 Hz, = .  Oe
20 40 60

 (mK)

7.5

8.0

8.5

/ 
(a

rb
. u

.)

f

= , = .  Oe

FIG. 4. Magnetic susceptibility of NaYbSe2 with B ∥ a (a-c) and B ∥ c (d-f). The left panels (a and d) show the field-dependence, showing a
5 T drop in susceptibility from a magnetization plateau in-plane, but no plateau out-of-plane. The center panels (b and e) show the temperature
dependence at low fields, with the marked drop in susceptibility at 23 mK, normalized by the peak susceptibility value. The right panels (c and
f) show the frequency dependence of the drop (where susceptibility is normalized by frequency ν).

the momentum distribution of the integrated intensity over
ω would be expected to closely resemble that of the U(1)
Dirac spin liquid state. However, dynamical variational Monte
Carlo calculations for J2/J1 = 0.07 and J2/J1 = 0.09 show
that the K and M points have comparable integrated spectral
weights [48], which starkly contrasts with experimental obser-
vations. Thus although we cannot uniquely identify the type
of QSL with the measurements described here, the simplest
interpretation of our results suggests a Z2 liquid, consistent
with Anderson’s original proposal [1].

In conclusion, we have used neutron spectroscopy, heat ca-
pacity, and magnetic susceptibility to investigate NaYbSe2.
The susceptibility feature either indicates a phase transition
or a gap. If the former, NaYbSe2 is the closest triangular
delafossite material yet to a QSL; if the latter, NaYbSe2 is
a gapped QSL. Details of the experiment strongly suggest a
gap, which means NaYbSe2 lies within the 2D triangular lat-
tice QSL phase with a (2.1 ± 0.1) µeV gap, making it stable
against perturbations. Beyond susceptibility (i), further ev-
idence for QSL physics are (ii) the coherent excitations ob-
served in the neutron spectra are consistent with QSL simu-
lated spectra, (iii) no static magnetic order is observed in spe-
cific heat down to 100 mK, and (iv) quantum entanglement
witnesses indicates NaYbSe2 has less divergent intensity than
KYbSe2, and is within the QSL phase. The presence of a gap
allows us to rule out the gapless U1 and suggests a gapped
Z2 liquid, but determining the precise nature of this ground
state requires further investigation. Thus, over 50 years after
Anderson’s original proposal, we finally have a clean experi-
mental realization of a triangular lattice QSL phase.
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SUPPLEMENTAL MATERIALS FOR SPECTRUM AND
LOW-ENERGY GAP IN TRIANGULAR QUANTUM SPIN

LIQUID NaYbSe2

I. SAMPLE SYNTHESIS

The samples for the neutron experiments were grown with
NaCl flux and are the same as reported in Ref. [30]. A new
batch of samples were grown for the susceptibility measure-
ment. A mixture of 1.58 gram NaCl powder, 0.23 gram Yb
pieces, and 0.26 gram Se pieces were sealed in a vacuumed
quartz tune. The tube was vertically located in a box furnace.
The temperature profile for the reaction is that the temper-
ature was raised to 850 Celsius degree with 50 degree/hour
rate, stayed 16 days, and then decreased to 750 Celsius degree
with 1 degree/hour rate, and thereafter decreased to room tem-
perature with 100 degree/hour rate. The reddish thin plates
of crystals could be picked out after the whole product was
washed by water.

II. NEUTRON EXPERIMENTS

We measured the inelastic spectrum of NaYbSe2 using the
∼ 300 mg co-aligned sample used in Ref. [30] mounted in a
dilution refrigerator (no magnet was used in this experiment).
We measured the hhl inelastic scattering on the CNCS spec-
trometer [49] at Oak Ridge National Laboratory’s Spallation
Neutron Source [50], measuring at Ei = 3.32 meV, 1.55 meV,
and 1.0 meV, rotating 180◦ to map the neutron spectrum. We
measured at T = 0.1 K and 12 K for a background. The
data are shown in main text Fig. 2, and were normalized to
absolute units by normalizing the magnon mode measured in
Ref. [30] to the nonlinear spin wave theory, such that the ef-
fective spin is 1/2.

Figure 6 shows the inelastic spectrum with an incident en-
ergy Ei = 1.0 meV, which gives an elastic line FWHM energy
resolution 0.02 meV. With this resolution, no gap is observed
at K.

Figure 7 shows the elastic scattering with the higher reso-
lution Ei = 1.55 meV data. Temperature-subtraction shows
no elastic scattering at hh = (1/3, 1/3), indicating an absence
of long range static magnetic order. However, this may be be-
cause the CNCS spectrometer is not sensitive enough: similar
CNCS scans on KYbSe2 showed no static magnetism at zero-
field [30], even though triple axis scans clearly showed the
onset of elastic Bragg intensity [28]. Therefore, the absence
of detectable NaYbSe2 elastic scattering in these data does not
necessarily indicate the absence of static magnetic order.

For a more complete view of the collected scattering data,
Fig. 8 shows constant energy slices of NaYbSe2 with Ei =

3.32 meV. Note the magnetic signal (most clearly shown in the
temperature-subtracted data) has essentially no dependence
on ℓ, indicating no correlations between the triangular lattice
planes. Figure 9 also shows this, with plots of different in-
tegration widths along ℓ which makes no visible difference to
the inelastic scattering pattern. Therefore these scattering data
are very two-dimensional.

Figure 10 shows the intensity at K as a function of energy
transfer. Unfortunately, because only one temperature is avail-
able, it is not possible to evaluate the presence or absence of
a power-law scaling collapse to the data. Instead, we merely
point out that the high energy transfer region appears to fol-
low a power law with α = 1.74(6), consistent with the fitted
KYbSe2 value of α = 1.73(12) [28] (though the precise expo-
nent depends upon the fitted energy transfer region).

III. AC CALORIMETRY

Ac calorimetry measurements under hydrostatic pressure
were performed in a piston-clamp pressure cell using Daphne
oil 7373 as the pressure medium using the standard steady
state technique [51]. The temperature oscillations were mea-
sured using an Au/0.07%Fe-chromel thermocouple, and a
constantan meander was attached to the opposite side of the
sample to apply heat. The heater power was varied between
25 nW and 5 µW depending on the sample temperature. The
measurement frequency was continuously adjusted to keep a
constant phase relationship between the applied heat and the
temperature oscillations on the thermocouple. For the lowest
(≤ 100 nW) powers and temperatures the frequency was fixed
near 2 Hz because the signal was too small to continuously
vary the frequency. Below 300 mK, it was not possible to find
a frequency range where f∆Tac was constant. This indicates
that the internal relaxation of the sample is likely slower than
the relaxation rate to the bath. Nonetheless, the measurement
would still be sensitive to phase transitions even in this tem-
perature range.

In Fig. 11 the NaYbSe2 specific heat is compared to pre-
viously published KYbSe2 data [28]. The “bump” in C/T is
smaller in NaYbSe2 than in KYbSe2, while the specific heat
below 300 mK is significantly larger in NaYbSe2. This indi-
cates more of the density of states has shifted to low energies,
which is consistent with the system being within a QSL phase.
Note also, in main text Fig. 3 there is no significant missing
entropy in NaYbSe2, which again is consistent with it being
in a well-defined quantum ground state rather than a glassy
frozen state.

Figure 11 also shows the experimental data from NaYbSe2
and KYbSe2 compared to the TPQ simulations. In C/T the
theoretical heat capacity maximum is at higher temperature
than the experimental maximum, possibly due to a finite-size-
induced gap. However, on a qualitative level the resemblance
between theory and experiment is strong, and the theoreti-
cal trend is consistent with NaYbSe2 having a larger second
neighbor exchange J2 than KYbSe2.

IV. AC SUSCEPTIBILITY

A. Method

The ac susceptometer comprises a solenoidal coil to
generate an ac magnetic field and a pair of sensing coils
housed within it. The pair of sensing coils are wound in
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(a)-(c) shows scattering with Ei = 3.32 meV, the bottom row (d)-(f) shows scattering with 1.55 meV. The left column shows the raw data at
0.1 K, the middle column the background at 12 K, the right column shows the background subtracted data.
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FIG. 6. NaYbSe2 scattering with Ei = 1.0 meV and |ℓ| ≤ 1.0 rlu.
Panel (a) shows data along hh, panel (b) shows a constant Q cut at
hh = (1/3, 1/3). Intensity monotonically decreases with increasing
energy, indicating a gapless spectrum to within ±0.02 meV.

opposite directions, ensuring they possess equal mutual
inductance in magnitude but opposite signs. Consequently,
when two sensing coils are connected in series, the induced
voltage across them becomes zero. The presence of a sample
positioned in the center of one of the sensing coils induces a
nonzero net voltage across the coils. This induced voltage is
directly proportional to the change in magnetic flux passing
through the sensing coil over time. More detailed information
can be found in https://nationalmaglab.org/user-facilities/dc-
field/measurement-techniques/ac-magnetic-susceptibility-
dc/. This setup includes a nonzero background susceptibility.
Based on our experience of running this setup for over ten
years, we believe that the excessive susceptibility near zero

magnetic field is due to coil background, although we did
not perform a background measurement. The background in
temperature scans is much smaller compared to the sample
signal. Therefore, the susceptibility drop below 23 mK is due
to the sample’s intrinsic behavior (confirmed by the absence
of such a downturn in KYbSe2 data, see below). We used
“Arbi. Unit” because of the background signal of the AC
susceptometer.

B. Additional data

Figure 12 shows the temperature-dependent AC suscepti-
bility at zero magnetic field up to higher temperatures than in
the main text Fig. 4. Paramagnetic behavior is evident up to
500 mK, with no phase transitions visible.

Figure 13 shows susceptibility to estimate the gap of the
low-temperature drop in susceptibility, which we find to be
2.1 µeV.

Figure 14 shows additional temperature-dependent
NaYbSe2 susceptibility data for applied fields between 1 T
and 12 T. For field applied along c, there are no clear features
in the data indicating phase boundaries. For field along
a, there are several kinks and discontinuities. The phase
diagram from temperature and field dependent susceptibility
features is plotted in panel (c) of Fig. 14.

Finally, for comparison with NaYbSe2, Figure 15 shows
the measured in-plane susceptibility of KYbSe2 (which was
also measured in the same cryostat at the same time—and
therefore the same temperature and field configurations—as
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reveals spin correlations independent of ℓ, meaning the magnetic excitations are two-dimensional and have no correlations between triangular
lattice planes.

the two NaYbSe2 crystals). Note the absence of a gap feature
in the data, which follows a 1/T divergence to the lowest tem-
peratures. Note also that the ordering transition is not visible
in the data (which is admittedly somewhat noisy), again evi-
dencing that the 23 mK downturn in NaYbSe2 is not from a
magnetic ordering transition.

V. THEORETICAL SIMULATIONS

A. MPS calculations

We performed MPS simulations on the J2/J1 model with
varying values of XXZ anisotropy ∆ [12, 16, 18, 53].

H = J1

∑
⟨i, j⟩

(S x
i S x

j+S y
i S y

j+∆S z
i S

z
j)+J2

∑
⟨⟨i, j⟩⟩

(S x
i S x

j+S y
i S y

j+∆S z
i S

z
j)

Simulations are done on a cylinder geometry with circumfer-
ence C = 6 and length L = 36 with XC boundary conditions
[45] on the triangular lattice, at a maximum bond dimension
of χ = 512 using the ITensor library [54]. The ground state
|Ω⟩ of the model is found using the density matrix renormal-
ization group (DMRG). The spin-spin correlation function is
determined with time evolution using the time-dependent vari-
ational principle (TDVP) with a time step of dt = 0.1 [18, 55–
59].

G(x, t) = ⟨Ω|Sx(t) · Sc(0)|Ω⟩

where the subscript c represents the central site on the cylin-
der. The dynamical spin spectral function is then computed as
the Fourier transform of the correlation function.

S (x, t) =
1
N

∑
x

∫ ∞
0

dt
2π

ei(q·x−ωt)G(x, t)
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Some power law behavior appears at high energy transfers, but it
seems to deviate from this at low energy transfers. The fitted expo-
nent strongly depends upon the region fitted, but the higher energy
region follows α = 1.74(6).

To remedy the finite time cutoff of the Fourier transform,
Gaussian broadening of the time data—on the order of the
cutoff Tmax ∼ 80—is applied to the correlation function be-
fore transforming [18].
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FIG. 11. NaYbSe2 specific heat compared to KYbSe2 (Schottky
anomaly subtracted) from Ref. [28]. For NaYbSe2 the nonmagnetic
NaLuSe2 specific heat [52] was subtracted. Panel a shows the spe-
cific heat, and panels b and d show the data with the temperature axis
scaled by fitted J1 [30], plotted as C and C/T respectively. Panels c
and e show the TPQ calculated specific heat as a function of J2 (in
units of J1), with the value closest to the fitted NaYbSe2 shown in
red.
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B. TPQ specific heat calculations

We numerically calculated the magnetic specific heat Cm
for the S = 1/2 AFM J1-J2 Hamiltonian

H = J1

∑
⟨i, j⟩

Si · S j + J2

∑
⟨⟨i, j⟩⟩

Si · S j (1)

on a 27-site cluster (shown in Fig. 16) with periodic bound-
ary conditions using the microcanonical thermal pure quan-
tum state (TPQ) [60] method and the HΦ library [61, 62],
version 3.5.2. In this typicality-based approach, a thermal
quantum state is iteratively constructed starting from a ran-
domized initial vector, and associated with a temperature es-
timated from the internal energy. To reduce statistical er-
rors, we averaged over 15 initial vectors. Finite-size errors
are expected to mainly affect the results at low temperatures
[63, 64], but not to change the trend with J2/J1 highlighted
here.
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FIG. 16. Finite size cluster used for the TPQ calculations. The num-
ber of sites (27) is divisible by three to be compatible with the 120◦

order at low J2/J1. Periodic boundary conditions are applied across
edges with dashed or dotted lines.

C. Phase transition through neural quantum states (NQSs)

1. NQS wave function

The NQS method utilizes an artificial neural network as a
variational wave function to approximate the ground state of
a target model [65]. In a system with N spin-1/2 degrees of
freedom, the Hilbert space can be spanned by the S z basis
|σ⟩ = |σ1, ..., σN⟩ with σi = ↑ or ↓. Similar to image recogni-
tion tasks in which the artificial neural network converts every
image input to a probability, in quantum many-body problems
the NQS converts every input basis |σ⟩ to a wave function am-
plitude ψσ. This gives the full quantum state as

|Ψ⟩ =
∑
σ

ψσ |σ⟩ . (2)

In this work, we employ deep residual convolutional neural
networks as the variational wave function. The network con-
tains 16 convolutional layers, each with 32 channels and 3× 3
kernels, leading to 139008 real parameters in total. The GeLU
activation is applied before each convolutional layer. The cir-
cular padding is utilized in the convolutional layer to realize
the exact translation symmetry. The output after the last con-
volutional layer contains 32 channels, which is divided into
two groups x(1)

j and x(2)
j each with 16 channels, and the final

wave function amplitude output of the network is given by
ψσ =

∑
j exp(x(1)

j + ix(2)
j ), where we sum over all elements in

the 16 channels.
In addition, we apply symmetries on top of the well-trained

ψσ to project variational states onto suitable symmetry sec-
tors. Assuming the system permits a symmetry group repre-
sented by operators Ti with characters ωi, the symmetrized
wave function is then defined as [66, 67]

ψ
symm
σ =

∑
i

ω−1
i ψTiσ. (3)

The applied symmetry groups in Eq. (3) are the D6 group re-
alizing rotation and reflection symmetries and the Z2 group
realizing the spin inversion symmetry σ→ −σ.

The deep network is trained by the MinSR method to
approach the ground state of the triangular J1-J2 Hamilto-
nian [68]. The training employs 10000 Monte Carlo samples,
20000 steps without symmetries followed by 10000 steps with
symmetries.

2. Phase transition

The transition between the 120◦-ordered and the QSL phase
can be detected through the spin structure factor

S (q) =
1
N

∑
i j

Ci jeiq·(ri−r j), (4)
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where q denotes the momentum, and Ci j is the real-space spin-
spin correlation given by

Ci j = ⟨Si · S j⟩ , (5)

which is obtained from the NQS wave function by Monte
Carlo sampling. The 120◦ order is signaled by a peak in the
spin structure factor S (K) at K = (4π/3, 0). In the thermody-
namic limit, S (K) diverges only in the 120◦ ordered phase but
not in the QSL phase.

Importantly, the numerical simulations are performed for
large but finite systems, leading to finite structure factors in
both phases. In order to minimize finite-size effects for the
detection of phase transitions, the so-called correlation ratio R
has been introduced [69–71]

R = 1 −
S (K + δq)

S (K)
, (6)

where K + δq represents the nearest neighboring momentum
of K. The correlation ratio represents a measure for the sharp-
ness of the spin structure factor. As the system size N in-
creases, R grows in the 120◦ ordered phase and decreases in

the QSL phase. Most important for the current purpose, this
opposite behavior in the two phases with system sizes, generi-
cally leads to a crossing point in R for different N at the phase
transition point. As shown in Fig. 17, the correlation ratio R
for different system sizes indeed exhibits such a crossing at
J2/J1 ≈ 0.063 signaling the phase transition.

We identify two sources for uncertainties in estimating the
precise quantum phase transition point, namely a variational
bias and a statistical error. First, for complex quantum models
such as the considered frustrated magnets we find that the vari-
ationally obtained wave function exhibits larger variational er-
rors upon increasing system size. We observe that these er-
rors usually have the tendency to lead to a stronger spin order
and consequently to a larger correlation ratio R consistent with
other works [72]. Therefore, our estimate for the phase transi-
tion point J2/J1 = 0.063 exhibits a bias towards larger values
of J2/J1 so that we interpret 0.063 as an upper bound. Second,
the measurement of R is based on an underlying Monte Carlo
sampling scheme, which introduces statistical errors and leads
to an uncertainty 0.001 in the critical J2/J1 value. In sum-
mary, the result provided in Fig. 17 lead to a bound of the
critical point of the form J2/J1 ≲ 0.063 ± 0.001.
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and kagomé lattices: A projective-symmetry-group analysis of
schwinger boson states, Phys. Rev. B 74, 174423 (2006).

[48] F. Ferrari and F. Becca, Dynamical structure factor of the J1−J2

heisenberg model on the triangular lattice: Magnons, spinons,
and gauge fields, Phys. Rev. X 9, 031026 (2019).

[49] G. Ehlers, A. A. Podlesnyak, J. L. Niedziela, E. B. Iverson, and
P. E. Sokol, The new cold neutron chopper spectrometer at the
spallation neutron source: Design and performance, Review of
Scientific Instruments 82, 085108 (2011).

[50] T. E. Mason, D. Abernathy, I. Anderson, J. Ankner, T. Egami,
G. Ehlers, A. Ekkebus, G. Granroth, M. Hagen, K. Herwig,
J. Hodges, C. Hoffmann, C. Horak, L. Horton, F. Klose,
J. Larese, A. Mesecar, D. Myles, J. Neuefeind, M. Ohl, C. Tulk,
X.-L. Wang, and J. Zhao, The spallation neutron source in oak
ridge: A powerful tool for materials research, Physica B: Con-
densed Matter 385, 955 (2006).

[51] P. F. Sullivan and G. Seidel, Steady-state, ac-temperature
calorimetry, Phys. Rev. 173, 679 (1968).

[52] J. Xing, L. D. Sanjeewa, J. Kim, W. R. Meier, A. F. May,
Q. Zheng, R. Custelcean, G. R. Stewart, and A. S. Sefat, Syn-
thesis, magnetization, and heat capacity of triangular lattice ma-
terials naerse2 and kerse2, Phys. Rev. Mater. 3, 114413 (2019).

https://doi.org/10.1103/PhysRevB.98.184403
https://doi.org/10.1103/PhysRevB.106.064418
https://doi.org/10.1103/PhysRevB.106.064418
https://doi.org/10.1103/PhysRevB.99.180401
https://doi.org/10.1103/PhysRevB.100.224417
https://doi.org/10.1103/PhysRevB.103.035144
https://doi.org/10.1103/PhysRevB.103.035144
https://doi.org/10.1103/PhysRevX.11.021044
https://doi.org/10.1103/PhysRevX.11.021044
https://doi.org/10.1038/s41567-023-02259-1
https://doi.org/10.1038/s41567-023-02259-1
https://doi.org/10.1038/s41535-023-00580-9
https://doi.org/10.1038/s41535-023-00580-9
https://doi.org/10.1103/PhysRevB.109.014425
https://doi.org/10.1038/nphys3971
https://doi.org/10.1038/nphys3971
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevB.103.184419
https://doi.org/10.1103/PhysRevB.103.184419
https://doi.org/10.1088/0953-8984/3/1/005
https://doi.org/10.1088/0953-8984/3/1/005
https://doi.org/10.1103/PhysRevB.91.081104
https://doi.org/10.1103/PhysRevB.91.081104
https://doi.org/10.1103/PhysRevB.92.014414
https://doi.org/10.1103/PhysRevB.92.014414
https://doi.org/https://doi.org/10.1016/0370-1573(77)90070-9
https://doi.org/https://doi.org/10.1016/0370-1573(77)90070-9
https://doi.org/https://doi.org/10.1016/j.adt.2015.12.002
https://doi.org/10.1103/PhysRevLett.84.1535
https://doi.org/10.1103/PhysRevLett.84.1535
https://doi.org/10.1103/PhysRevB.69.104431
https://doi.org/10.1038/nphys3700
https://arxiv.org/abs/2405.10899
https://arxiv.org/abs/2405.10899
https://arxiv.org/abs/2405.10899
https://arxiv.org/abs/2405.10899
https://doi.org/10.1126/science.abc6363
https://doi.org/10.1126/science.abc6363
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abc6363
https://arxiv.org/abs/2307.12295
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevB.106.094420
https://doi.org/10.1103/PhysRevB.106.094420
https://doi.org/10.1103/PhysRevB.74.174423
https://doi.org/10.1103/PhysRevX.9.031026
https://doi.org/10.1063/1.3626935
https://doi.org/10.1063/1.3626935
https://doi.org/10.1016/j.physb.2006.05.281
https://doi.org/10.1016/j.physb.2006.05.281
https://doi.org/10.1103/PhysRev.173.679
https://doi.org/10.1103/PhysRevMaterials.3.114413


14
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