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Quasi-one-dimensional correlated electronic multiorbital systems with either ladder or chain geometries
continue attracting considerable interest due to their complex electronic phases arising from the interplay of the
hopping matrix, the crystal-field splitting, the electronic correlations (Hubbard repulsion U and Hund coupling
JH), and strong quantum fluctuations. Recently, the intriguing cobalt zigzag chain system BaCoTe2O7, with
electronic density n = 7, was prepared experimentally. Here, we systematically study the electronic and magnetic
properties of this quasi-one-dimensional compound from the theoretical perspective. Based on first-principles
density functional theory calculations, strongly anisotropic one-dimensional electronic Co 3d bands were found
near the Fermi level. By evaluating the relevant hopping amplitudes, we provide the magnitude and origin
of the nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping matrices in BaCoTe2O7. With this
information, we constructed a three-orbital electronic Hubbard model for this zigzag chain system, and studied
two cases: with only a NN hopping matrix, and with NN plus NNN hopping matrices. Introducing the Hubbard
and Hund couplings and studying the model via the density matrix renormalization group method, we constructed
the ground-state phase diagram. A robust staggered ↑ - ↓ - ↑ - ↓ antiferromagnetic (AFM) region was found
when only the NN hopping matrix in the chain direction was employed. However, for the realistic case where
the NNN hopping matrix is also included, the dominant state becomes instead a block AFM ↑ - ↑ - ↓ - ↓ order,
in agreement with experiments. The system displays Mott insulator characteristics with three half-filled orbitals,
when the block AFM order is stable. Our results for BaCoTe2O7 provide guidance to experimentalists and
theorists working on this zigzag one-dimensional chain and related materials.

DOI: 10.1103/PhysRevB.109.155163

I. INTRODUCTION

Because of their intertwining charge, spin, and lattice de-
grees of freedom as well as strong quantum fluctuations [1–4],
a variety of fascinating physical properties have been re-
ported in one-dimensional (1D) correlated electronic systems,
such as high-critical temperature superconductivity [5–11]
and charge density waves [12–14], to name a few.

Furthermore, when the 1D system contains several ac-
tive orbitals, further intriguing properties have been unveiled
arising from the interplay among the hopping matrix, the
crystal-field splittings, and electronic correlations where in
addition to the canonical Hubbard repulsion U , also the
Hund coupling JH plays a key role. For example, considering
the competition between hopping and electronic correla-
tions in the intermediate coupling range region, the exotic
orbital-selective Peierls phase [15] and orbital-selective Mott
phase [16], with a mixture of localized and itinerant be-
havior of the different orbitals, were obtained for some real
1D systems [17–19]. Furthermore, a large interorbital elec-
tronic hopping could lead to a ferromagnetic (FM) insulating
state between doubly occupied and half-filled orbitals [20,21],
which potentially is already realized in some iron chain mate-
rials [22–25]. Varying the electronic densities and electronic
correlations, many complex and interesting spin orders were

obtained by the competition between FM vs antiferromagnetic
(AFM) tendencies [26,27].

Recently, a cobalt-based zigzag chain compound
BaCoTe2O7 has been systematically studied using neutron
diffraction experiments. An interesting “block” AFM state
with a ↑ - ↑ - ↓ - ↓ pattern was found along the zigzag chain
direction [28]. BaCoTe2O7 has an orthorhombic structure
with space group Ama2 (No. 40), as shown in Fig. 1(a),
where the nearest-neighbor (NN) Co ions are connected
by alternating inverted square pyramides CoO5. A Co2+

ion with the d7 configuration has three half-filled and two
double-occupied orbitals, leading to a net S = 3

2 state. In this
case, due to Pauli’s principle, both interorbital and intraorbital
hoppings would lead to AFM coupling between two Co sites,
as displayed in Fig. 1(b). However, compared with the straight
uniform chain, in the zigzag chain the next-nearest-neighbor
(NNN) hopping will be enhanced due to the reduced distance
of the NNN bonds [see Fig. 1(c)]. In BaCoTe2O7, the NNN
Co-Co bond is about ∼5.574 Å, which is close to that of the
NN Co-Co bond (∼4.658 Å). As a result, the NNN hopping
can be comparable to the NN hopping, leading to strong AFM
coupling both in the NN and NNN bonds, resulting in a strong
magnetic frustration. What kind of spin state will dominate in
this environment?
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FIG. 1. (a) Schematic crystal structure of the BaCoTe2O7 con-
ventional cell (green = Ba; blue = Co; brown = Te; red = O.).
(b) AFM superexchange path for two NN sites caused by both in-
traorbital and interorbital hoppings with S = 3

2 . (c) Schematic lattice
of zigzag chain.

BaCoTe2O7 belongs to a noncentrosymmetric polar ma-
terial family BaMTe2O7 (M = Mg, Co, Ni, Cu, and
Zn) [29–31]. BaMgTe2O7 and BaZnTe2O7 are nonmag-
netic [30]. Moreover, no long-range magnetic ordering was
found down to 1.8 K in BaCuTe2O7 but with a broad peak
around 71 K in the magnetic susceptibility [29]. BaNiTe2O7

has a commensurate AFM structure (0.5, 1, 0), also involving
the ↑ - ↑ - ↓ - ↓ coupling along the chain direction, as in the
case of Co. Although there are many experimental studies in
this family of materials, systematic theoretical studies are still
rare.

To better understand the electronic and magnetic proper-
ties, here both first-principles density functional theory (DFT)
and density matrix renormalization group (DMRG) methods
were employed to investigate BaCoTe2O7. First, the ab initio
DFT calculations indicate a strongly anisotropic electronic
structure for BaCoTe2O7, in agreement with its anticipated
1D zigzag geometry. Based on the Wannier functions obtained
from first-principle calculations, we obtained the relevant hop-
ping amplitudes and onsite energies of the cobalt atoms. For
the NN hopping matrix, the largest hopping arises from the
d3z2−r2 orbital. Intriguingly, for the NNN hopping matrix, the
largest hopping element emerges from dxy to dxy, and micro-
scopically this is caused by the super-superexchange via a
complex path dxy-px/py-px/py-dxy. Anticipating rich results,
we constructed a multiorbital Hubbard model for the cobalt
zigzag chains considering both NN and NNN hoppings.

Based on DMRG calculations, we obtained the ground-
state phase diagram varying the onsite Hubbard repulsion U
and the onsite Hund coupling JH. When the NNN hoppings
are properly included, the block AFM ↑ - ↑ - ↓ - ↓ state with
Mott insulating (MI) characteristics was found to be domi-
nant in a robust portion of the phase diagram, in agreement
with the experimental results. In addition, paramagnetism was
found in the regime of weak Hubbard coupling strength. Us-
ing DFT+U , the block spin order was here also found to
be the most likely magnetic ground state compared to other
magnetic orders, in agreement with experiments. Then, both
techniques used here agree that a block arrangement is the
most stable for this compound. Note that in Ref. [28], where
the experimental result for the block phase was reported, the

theoretical component also used DFT+U for the block state
but without comparing with other possible states. Thus, our
effort here reports that the block phase is indeed the ground
state from a microscopic perspective using two independent
techniques.

II. METHODS

A. DFT method

In this work, we employed first-principles DFT cal-
culations using the Vienna ab initio simulation package
(VASP) software within the projector augmented-wave (PAW)
method [32–34], where the electronic correlations were con-
sidered by using the generalized gradient approximation
(GGA) with the Perdew-Burke-Ernzerhof functional [35]. The
plane-wave cutoff used was 520 eV and the k-point mesh
was 6 × 6 × 3 for the calculations of the electronic structure
of the nonmagnetic state, which was accordingly adapted
for the magnetic calculations. To obtain the hopping matrix
and crystal-field splitting parameters, the maximally localized
Wannier functions (MLWFs) method was employed to fit the
Co’s five 3d bands by using the WANNIER90 packages [36].
To better understand the magnetic properties, the local spin
density approach (LSDA) plus Ueff with the Dudarev format
was employed [37]. Both the lattice constants and atomic
positions were fully relaxed with different spin configurations
until the Hellman-Feynman force on each atom was smaller
than 0.01 eV/Å. All the crystal structures were visualized
with the VESTA code [38].

B. Multiorbital Hubbard model

To understand the magnetic properties of the one-
dimensional zigzag chain, we employed the standard mul-
tiorbital Hubbard model, which includes a kinetic energy
component and Coulomb interaction energy terms H = Hk +
Hint. The tight-binding kinetic portion is described as

Hk =
∑

〈i, j〉σγ γ ′
tγ γ ′ (c†

iσγ c jσγ ′ + H.c.) +
∑
iγ σ

�γ niγ σ , (1)

where the first part represents the hopping of an electron from
orbital γ at site i to orbital γ ′ at the NN or NNN site j, using
a chain of length L. γ and γ ′ represent the three different
orbitals. The second part are the crystal fields.

The standard electronic interaction portion of the Hamilto-
nian is

Hint = U
∑

iγ

ni↑γ ni↓γ +
(

U ′ − JH

2

) ∑
i

γ<γ ′

niγ niγ ′

− 2JH

∑
i

γ<γ ′

Siγ · Siγ ′ + JH

∑
i

γ<γ ′

(P†
iγ Piγ ′ + H.c.). (2)

The first term is the intraorbital Hubbard repulsion. The sec-
ond term is the electronic repulsion between electrons at
different orbitals where the standard relation U ′ = U − 2JH

is assumed due to rotational invariance. The third term rep-
resents the Hund’s coupling between electrons occupying the
Co’s 3d orbitals. The fourth term is the pair hopping between
different orbitals at the same site i, where Piγ =ci↓γ ci↑γ .
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To solve the multiorbital Hubbard model, by introduc-
ing quantum fluctuations, the many-body technique that we
employed was based on the DMRG method [39,40], where
specifically we used the DMRG++ software package [41]. In
our DMRG calculations, we employed a 16-site cluster chain
with three orbitals per site and open-boundary conditions
(OBC). Furthermore, at least 1200 states were kept and up
to 21 sweeps were performed during our DMRG calculations.
In addition, the average electronic filling n = 3 for the three
orbitals at each site was considered.

In the tight-binding term, we used the Wannier function
basis {d3z2−r2 , dyz, dxy}, here referred to as γ = {0, 1, 2}, re-
spectively. We only considered the NN and NNN hopping
matrices:

tNN1
γ γ ′ =

⎡
⎣−0.079 0.027 0.028

0.027 0.022 0.009
−0.028 −0.009 −0.003

⎤
⎦, (3)

tNN2
γ γ ′ =

⎡
⎣−0.079 −0.027 0.028

−0.027 0.022 −0.009
−0.028 0.009 −0.003

⎤
⎦, (4)

tNNN
γ γ ′ =

⎡
⎣−0.026 −0.007 0.019

0.007 0.013 −0.038
−0.019 −0.038 0.124

⎤
⎦. (5)

All the hopping matrix elements are given in eV units. �γ

is the crystal-field splitting of orbital γ . Specifically, �0 =
−0.072, �1 = −0.397, and �2 = 0.477 (the Fermi level is
considered to be zero). Note that in the notation convention
we used, as shown in Fig. 1(c), the hopping matrices have
direction. For example, the hopping matrix from atom 0 to
atom 1 is tNN1 and the one from atom 1 to atom 0 is the
transposed of tNN1.

III. RESULTS

A. Crystal-field splitting and the origin of strong NNN hopping

First, we calculated the electronic structures of the non-
magnetic state of BaCoTe2O7, as shown in Fig. 2, using the
experimental crystal structure [28]. As displayed in Fig. 2(b),
near the Fermi level, the electronic density is mainly con-
tributed by the cobalt 3d orbitals, slightly hybridized with O’s
2p orbitals, where most of these O’s 2p orbitals are located
in the lower-energy region (not shown here). Furthermore,
the Co 3d states are located in a relatively narrow range
of energy from ∼ − 1 to ∼1 eV, indicating a large charge-
transfer energy between Co 3d and O 2p states, leading to a
Mott-Hubbard system.

In addition, the band structure of BaCoTe2O7 clearly shows
that the bands are more dispersive along the chains than
along other directions, such as � to Z and S to R, which is
compatible with the dominant presence of 1D zigzag chains
along the c axis. Furthermore, the dxy orbital bands are more
dispersive than other orbitals, indicating that dxy should play
the primary role in magnetism and other physical properties
of BaCoTe2O7, as displayed in Fig. 2(a).

Based on the MLWFs method, we obtained the crystal-
field splittings for Co 3d orbitals [see Fig. 3(a)] by using
the WANNIER90 packages [36]. By introducing the electronic
correlations and considering the high-spin state, the dxz and

FIG. 2. (a) Projected band structure of BaCoTe2O7 for the non-
magnetic state. The Fermi level is shown with a dashed horizontal
line. The weight of each Co’s 3d orbital is given by the size of
the circles. Note that the local z axis is perpendicular to the CoO5

plane towards the top O atom, while the local y axis is along the
c axis, leading to the xy orbital lying along the in-plane CoO bond
directions. The coordinates of the high-symmetry points in the Bril-
louin zone are � = (0, 0, 0), Y = (0.5, 0.5, 0), F0 = (0.30769,
0.69231, 0), D0 = (−0.30769, 0.30769, 0), Z = (0, 0, 0.5), B0 =
(−0.30769, 0.30769, 0.5), G0 = (0.30769, 0.69231, 0.5), T = (0.5,
0.5, 0.5), S = (0, 0.5, 0), and R = (0, 0.5, 0.5). Note that all the
high-symmetry points are in scaled units, corresponding to the units
of 2π/s (s = a, b, or c). (b) Density of states near the Fermi level
of BaCoTe2O7 for the nonmagnetic phase (blue = Ba; red = Co;
gray = Te; purple = O.). Note that the DFT electronic structures are
calculated using the experimental crystal-structure information [28],
without additional Hubbard U .

dx2−y2 orbitals are fully occupied while dxy, d3z2−r2 , and dyz are
only half-filled due to the d7 configurations as well, then the
system will be in a S = 3

2 state in the large-U and JH limits, as
displayed in Fig. 3(a). For the NN sites, the largest hopping
element (∼0.079 eV) arises from d3z2−r2 orbitals while the
hopping between dxy orbitals is quite small (∼0.003 eV).
However, the NNN hopping between dxy orbitals, ∼0.124 eV,

dxy           
dz2

dyz
dxz
dx2-y2

(a)

x
y

z (b)

(c)

y

z

(d) (e)

FIG. 3. (a) Sketch of the CoO5 cluster and the crystal splitting
of the five d orbitals. The orbital filling sketch is considered in the
large-U and JH limits. (b) Side view and (c) top view of Wannier
functions for the Co dxy orbital corresponding to the NNN sites of
BaCoTe2O7 (yellow and light blue indicate the two signs of the wave
function). (d) Side view and (e) top view of Wannier functions for
the Co d3z2−r2 orbital for the NN sites of BaCoTe2O7.
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is much larger than the other intraorbital and interorbital hop-
pings.

To better understand these hoppings, we first plot the Wan-
nier functions of dxy in Figs. 3(b) and 3(c), where it clearly
shows that the dxy orbital displays strong 1D characteris-
tics along the c axis, leading to a strong overlap between
NNN Co-Co sites via the O’s px or py orbitals, while the
overlap is nearly zero among the NN sites. Thus, overall
this leads to a strong AFM coupling among the NNN sites
due to super-superexchange via the dxy-px/py-px/py-dxy path.
However, the other two orbitals (specifically, d3z2−r2 and dyz)
have smaller overlaps along the NNN bonds but contribute
instead to the NN bonds because they are oriented along the z
axis. As shown in Figs. 3(d) and 3(e), there are also obvious
overlaps between two d3z2−r2 orbitals along the NN bond via a
mixture of the apical O’s pz and in-plane O’s p orbitals. Thus,
the physical properties of this system are determined by the
combination of the influence of both NN and NNN hoppings.

B. DMRG phase diagrams

For 1D systems in general, quantum fluctuations are quite
important at low temperatures but DFT neglects those fluctu-
ations. Thus, we employ the many-body DMRG technique to
incorporate the quantum effects due to the magnetic couplings
along the zigzag chain. These quantum fluctuations are needed
to fully clarify the true magnetic ground-state properties.
Here, we considered the previously described effective multi-
orbital Hubbard model in the zigzag lattice with NN and NNN
hopping matrix assuming three electrons in three orbitals per
site in average, i.e., corresponding to the electronic density per
site n = 3. It also should be noted that the DMRG method has
repeatedly proven to be a powerful technique for discussing
low-dimensional interacting systems [42,43]. To understand
the physical properties of the system under consideration here,
we measured several observables based on the DMRG calcu-
lations [44].

First, we calculated the spin-spin correlation S(r) and spin
structure factor S(q) at U = 4 eV and JH/U = 0.2 for two
cases: (1) only NN hopping and (2) NN plus NNN hoppings,
the latter being the most realistic for the compound we con-
sidered. The spin-spin correlations in real space are defined
as

S(r) = 〈Si · S j〉, (6)

with r = |i − j|, and the spin structure factor is

S(q) = 1

L

∑
r

e−iqrS(r). (7)

Figure 4 shows the spin-spin correlation S(r)=〈Si · S j〉
as a function of distance r at JH/U = 0.2. The distance is
defined as r = |i − j|, with i and j site indexes. For U = 4 eV,
with only NN hopping, the spin-spin correlation S(q) shows a
canonical staggered ↑ - ↓ - ↑ - ↓ AFM phase, with a peak at
π in the spin structure factor S(q). However, by considering
the NNN hopping, it shows a quite different spin arrange-
ment, namely, a block AFM with a ↑ - ↑ - ↓ - ↓ pattern,
corresponding to a peak at π/2 in the spin structure S(q), as
displayed in Fig. 4. Thus, these results indicate that the NNN
hopping is important to understand the block AFM state in
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FIG. 4. (a) Spin-spin correlation S(r) = 〈Si · S j〉 (with distance
r = |i − j| in real space) and (b) the spin structure factor S(q), for
zigzag (red line) and uniform (blue line) chains, both at JH/U = 0.2
with U = 4 eV (solid symbols) and 0.4 eV (open symbols). We use
a chain with L = 16.

the S = 3
2 zigzag chain BaCoTe2O7. For U = 0.4 eV, the spin

correlation S(r) decays rapidly vs distance r for both cases,
whether or not involving the NNN hopping matrix, due to
the 1D strong quantum fluctuations and the weak value of the
coupling U .

Next, we calculated the DMRG phase diagram for different
values of U and JH/U for the two hopping cases mentioned
above, based on the DMRG measurements of the spin-spin
correlation and spin structure factor, as well as the site-average
occupancy of orbitals and orbital-resolved charge fluctuations.

As shown in Fig. 5, we found a paramagnetic phase (PM) at
small U , followed by a robust canonical staggered AFM phase

0.2 0.4 0.6 0.8 2 4 6 81 10
0.05

0.10

0.15

0.20

0.25

J H
/U

U

FIG. 5. Phase diagram of the three-orbital Hubbard model vary-
ing U and JH/U , with only NN hopping by using DMRG and
a L = 16 chain system with open boundary conditions. Different
electronic and magnetic phases are indicated by solid regions and
labels, including paramagnetic metal (PM M, in pink) and canoni-
cal staggered AFM Mott insulator (AFM1 MI, in blue). Note that
the boundaries should be considered only as crude approximations
due to the discrete set of parameter points investigated. The phase
boundaries are crudely determined based on some indicators, such
as the electron density of each orbital, charge fluctuations, and the
dominant peak in S(q).
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FIG. 6. Phase diagram of the three-orbital Hubbard model vary-
ing U and JH/U , with NN plus NNN hoppings by using DMRG and
an L = 16 chain system with open boundary conditions. Different
electronic and magnetic phases are indicated by solid regions and la-
bels, including paramagnetic metal (PM M, in pink) and block AFM
Mott insulator (BX2 MI, in red). Note that the boundaries should
be considered only as crude approximations due to the discrete set
of parameter points investigated. The phase boundaries are crudely
determined based on some indicators, such as the electron density of
each orbital, charge fluctuations, and the dominant peak in S(q).

with a ↑ - ↓ - ↑ - ↓ pattern. At small Hubbard interaction, the
spin correlation S(r) decays rapidly vs distance r, indicating
paramagnetic behavior. By increasing U , the system turns to
the canonical staggered AFM phase with the ↑ - ↓ - ↑ - ↓
configuration in the whole region of our study. This is easy
to understand since both interorbital and intraorbital hoppings
would lead to AFM tendencies in-between the three half-
filling sites. As JH/U increases, the critical value of U for the
PM-AFM1 transition decreases.

Similarly to the case with only NN hopping, after intro-
ducing NNN hoppings the PM state was found in the small-U
region, as displayed in Fig. 6. Afterwards, the block AFM
state with ↑ - ↑ - ↓ - ↓ order is obtained by increasing U .
Note that the BX2 state does not appear in the entire JH/U
and U regions explored. As JH/U increases, the critical value
of U for the PM-BX2 transition is reduced, as displayed in
Fig. 6. We do not observe any other magnetic state in the JH/U
and U regions we studied. Thus, when compared to the phase
diagram with only NN hopping, the NNN hopping is crucial
for the stabilization of the block state in this system. This is
because the intraorbital hopping of the dxy orbital causes the
strongest AFM interaction strength to be among the NNN sites
(in general following the rule that the strength is regulated
by ∼t2/U ) rather that among the NN sites. Thus, this system
forms a block AFM pattern along the chain direction.

C. PM to block MI transition

To understand the PM to block phase transition and the
characteristics of metallic vs insulating behavior in this sys-
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<
S

2
>

γ

FIG. 7. (a) Orbital-resolved occupation number nγ , (b) charge
fluctuations δnγ = 1

L

∑
i(〈n2

γ ,i〉 − 〈nγ ,i〉2), (c) 〈S2
γ 〉, and (d) spin

structure factor S(q) vs U , at JH/U = 0.2. Here, we used a 16-site
cluster chain with NN and NNN hoppings for three electrons in three
orbitals.

tem, we also studied the site-average occupancy of different
orbitals nγ , and orbital-resolved charge fluctuations δnγ . Here,
we used JH/U = 0.2 as an example.

The site-average occupancy of orbitals, orbital-resolved
charge fluctuations, and 〈S2

γ 〉 are defined as

nγ = 1

L

∑
i,σ

〈niγ σ 〉, (8)

δnγ = 1

L

∑
i

(〈
n2

γ ,i

〉 − 〈nγ ,i〉2
)
, (9)

〈
S2

γ

〉 = 1

L

∑
i

〈
S2

γ ,i

〉
. (10)

We plot the site-average occupancy of different orbitals nγ

for different values of U , as shown in Fig. 7(a). At small U
(<1 eV), the γ = 0 (d3z2−r2 ) orbital remains half-filled and
the γ = 1 (dyz) orbital is double occupied, while the γ = 2
(dx2−y2 ) orbital is unoccupied [see Fig. 7(a)]. In this U region,
the spin correlation S(r) decays rapidly as site distance r
increases, indicating paramagnetic behavior, while the charge
fluctuations are mainly contributed by the γ = 0 (d3z2−r2 )
orbitals [see Fig. 7(b)].

By increasing the Hubbard interaction U , the population
of all three orbitals reaches 1 without charge fluctuations, as
displayed in Fig. 7(b), indicating a Mott insulating behavior.
The strong local magnetic moments are fully developed with
spin-squared 〈S2

γ 〉 = 0.75 for each of the three orbitals when
U > 1 eV, as shown in Fig. 7(c). In addition, we also sum-
marize the spin structure factor S(q) for different vectors as a
function of U in Fig. 7(d). In the small-U paramagnetic phase
(U/W < 1), all the S(q)s of different phases have similar
values and do not display any obvious peak at a specific value
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of q, suggesting a PM state. When U > 1 eV, S(π/2) becomes
clearly dominant at the U region we studied. Thus, this PM
to block transition is a metal to insulator transition, due to
the absence of charge fluctuations in the latter, indicating this
phase should be a block AFM Mott insulator.

Finally, let us briefly discuss the connection of our re-
sults with experimental results of the noncentrosymmetric
polar materials BaMTe2O7 (M = Ni and Cu). Namely, using
the same hoppings and crystal fields of our present calcula-
tions, we can crudely estimate the properties of using other
transition metals by simply changing the electronic filling.
Following this procedure, in the S = 1 BaNiTe2O7 compound,
the extra electron will occupy the lower dyz energy level,
leading to only two “active” orbitals (d3z2−r2 and dxy). Thus,
the AFM interaction strength of the NNN sites is still larger
than that among the NN sites, leading to block coupling along
the zigzag direction. For the S = 1

2 BaCuTe2O7 compound,
now only one dxy orbital remains active. However, the hopping
of dxy between NNN sites is about 40 times larger than the
hopping of dxy between NN sites, leading to a quite weak
magnetic coupling among the NN sites. Thus, this S = 1

2
zigzag chain may not form long-range magnetic order along
the chain direction. We also would like to remark that the
presence of additional interactions, such as interchain cou-
pling, single-ion anisotropy, or other effects, is necessary to
stabilize long-range magnetic order and also important for the
spin canting in the real bulk materials [28,31]. Otherwise, in
a one-dimensional system, the correlations always decay like
a power law. These additions (single-ion anisotropy, etc.) are
not the focus of this work, thus, we leave this issue to future
studies.

D. Additional DFT discussion

For completeness, let us briefly discuss our DFT magnetic
results here. As shown in Fig. 8, three possible magnetic con-
figurations in the zigzag chain were considered: block AFM
with wave vector kq = π/2, AFM1 with wave vector kq = π ,
and FM with wave vector kq = 0. In addition, the LSDA plus
Ueff with the Dudarev format was introduced to simulate the
onsite interactions, where Ueff = 6 eV was used as discussed
in the previous experimental work for BaCoTe2O7 [28]. Both
the lattice constants and atomic positions were fully relaxed
for those different spin states.

First, the block AFM magnetic order has the lowest energy,
while the AFM1 and FM have a higher energy by about
∼15.5 and ∼3.3 meV/Co, respectively. Furthermore, we also
calculated the local magnetic moment of Co atoms and it is
2.737 μB/Co, in reasonable agreement with the S = 3

2 spin
state found in the model study. In addition, we also studied
the band structures and density of states for the block AFM
magnetic state by using LSDA+U [37] with Ueff = 6 eV. The
calculated indirect band gap is ∼2 eV, in good agreement with
previous experimental studies using the UV-vis absorption
spectrum that reported ∼2.68 eV [28]. These results support
the charge-transfer picture discussed in the previous section.
Without any interaction, the Co’s 3d states mainly contribute
to the states near the Fermi level where most O 2p states are
located in a lower-energy region with a large charge-transfer
energy from O 2p to Co 3d orbitals. By introducing the

(a)

(b)

(c)

FIG. 8. Sketch of the three possible magnetic configurations
(spins denoted by arrows) in the zigzag chain studied via DFT+U :
(a) Block AFM with wave vector kq = π/2, (b) AFM1 with wave
vector kq = π , and (c) FM with wave vector kq = 0. Note that in
(a) the pairs of spins pointing along the same direction (such as the
pair pointing up on the far left) could be located along the other
diagonal of the zigzag chain as well, giving to this state a degeneracy
two that may lead to “nematic” consequences at finite temperature as
it occurs for iron superconductors.

Hubbard U , the Co 3d states display Mott insulating behavior
with a large Mott gap (∼8 eV at Ueff = 6 eV), pushing the
O 2p states (slightly hybridized with Co 3d states) close to
the Fermi surface (see Fig. 9). Note that the spin dependence
of the correlation energy density is already considered in the
LSDA portion. As an overall effect, the calculated band gap
of the system is only about 2 eV at a larger Ueff = 6 eV, much
smaller than the Mott gap of the 3d states.
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)

(a) (b)

DOS

Ba

Co

Te

O

FIG. 9. (a) Band structure of BaCoTe2O7 for the block AFM
magnetic state with Ueff = 6 eV. The Fermi level is shown with a
dashed horizontal line. The coordinates of the high-symmetry points
in the Brillouin zone are � = (0, 0, 0), Y = (0.5, 0.5, 0), F0 =
(0.30769, 0.69231, 0), D0 = (−0.30769, 0.30769, 0), Z = (0, 0, 0.5),
B0 = (−0.30769, 0.30769, 0.5), G0 = (0.30769, 0.69231, 0.5), T =
(0.5, 0.5, 0.5), S = (0, 0.5, 0), and R = (0, 0.5, 0.5). Note that all the
high-symmetry points are in scaled units, corresponding to the units
of 2π/s, (s = a, b, or c). (b) Density of states near the Fermi level of
BaCoTe2O7 for the block AFM magnetic state with Ueff = 6 eV. Note
that only the spin-up channel is displayed for both band structure and
density of states here because the spin-down channel is symmetric.
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IV. CONCLUSIONS

In summary, we systematically studied the zigzag com-
pound BaCoTe2O7 by using first-principles DFT and DMRG
calculations. Based on first-principles DFT, a strongly
anisotropic one-dimensional electronic band structure was
observed in the nonmagnetic phase, corresponding to its dom-
inant zigzag chain geometry. Furthermore, the dxy bands are
more dispersive than other orbitals’ bands, suggesting that
the dxy orbitals play the key role in magnetism and other
physical properties in BaCoTe2O7. Based on the Wannier
functions calculated from DFT, we obtained the NN and NNN
hopping amplitudes and onsite energies for the cobalt atoms.
The hopping of dxy to dxy between NNN Co-Co sites is the
largest element in the hopping matrices, which is caused by
the super-superexchange via the path dxy-px/py-px/py-dxy.

Then, a multiorbital Hubbard model for the cobalt chain
was constructed and studied by using the many-body DMRG
methodology, considering quantum fluctuations, for two mod-
els: (1) considering only a NN hopping matrix and (2)
considering NN plus NNN hopping matrices. Based on these
DMRG calculations, we obtained a robust staggered ↑ - ↓ - ↑
- ↓ antiferromagnetic (AFM1) state when having only the NN
hopping matrix in the chain direction, while a more dominant
block (BX2) ↑ - ↑ - ↓ - ↓ order was unveiled by introduc-
ing the NNN hopping matrix. At small Hubbard coupling
strengths, this system displayed PM metallic phase behavior
with large nonzero charge fluctuations contributed mainly by
the γ = 0 (d3z2−r2 ) orbital. At larger U , the system displays
Mott insulator characteristics, due to the absence of charge
fluctuations, with three half-filled orbitals, in the region where
the magnetic block AFM is obtained.
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APPENDIX

As shown in Fig. 10, the Wannier band structure can be
fit well with the DFT bands of BaCoTe2O7. Based on the
Wannier fitting results, we deduced the hopping parameters
and onsite crystal fields. Here, the two largest hopping ele-
ments that we obtained are ∼0.124 eV between dxy orbitals
for the NNN sites and ∼0.079 eV between d3z2−r2 orbitals
for the NN sites, while other hopping elements are much
smaller. Those two states (dxy and d3z2−r2 ) are the key orbitals
to understand this system. Due to similar crystal-splitting
energies for dyz (∼ − 0.397 eV), dxz (∼ − 0.527 eV), and
dx2−y2 (∼ − 0.535 eV), it is possible for the reordering of

-1.0

-0.5

0.0

0.5

1.0

E
(e

V
)

DFT
Wannier

Γ  Y F0|D0 Γ Z B0|G0 T Y|Γ S R Z T

FIG. 10. (a) DFT and Wannier bands of BaCoTe2O7. The coor-
dinates of the high-symmetry points in the Brillouin zone are � = (0,
0, 0), Y = (0.5, 0.5, 0), F0 = (0.30769, 0.69231, 0), D0 = (−0.30769,
0.30769, 0), Z = (0, 0, 0.5), B0 = (−0.30769, 0.30769, 0.5), G0 =
(0.30769, 0.69231, 0.5), T = (0.5, 0.5, 0.5), S = (0, 0.5, 0), and R =
(0, 0.5, 0.5). Note that all the high-symmetry points are in scaled
units, corresponding to the units of 2π/s (s = a, b, or c). Note that
the DFT electronic structures are calculated using the experimental
crystal structure [28] without and additional Hubbard U .

those orbitals in some U and JH regions. However, no matter
which orbital is chosen (dyz, dxz, and dx2−y2 ), it will not alter
the calculational results, because of the nature of the hopping
matrix. Note in our DMRG calculations, we considered a three
orbital with the basis (d3z2−r2 , dyz, and dxy) orbitals.

Here, we also list the hopping matrix with using the basis
(d3z2−r2 , dxz, dyz, dx2−y2 , and dxy) orbitals:

tNN1
γ γ ′ =

⎡
⎢⎢⎢⎢⎣

−0.079 −0.045 0.027 −0.043 0.028
0.045 0.044 −0.023 −0.010 −0.013
0.027 0.023 0.022 −0.005 0.009

−0.043 0.010 −0.005 −0.005 −0.001
−0.028 −0.013 −0.009 0.001 −0.003

⎤
⎥⎥⎥⎥⎦,

(A1)

tNN2
γ γ ′ =

⎡
⎢⎢⎢⎢⎣

−0.079 0.045 −0.027 −0.043 0.028
−0.045 0.044 −0.023 0.010 0.013
−0.027 0.023 0.022 0.005 −0.009
−0.043 −0.010 0.005 −0.005 −0.001
−0.028 0.013 0.009 0.001 −0.003

⎤
⎥⎥⎥⎥⎦,

(A2)

tNNN
γ γ ′ =

⎡
⎢⎢⎢⎢⎣

−0.026 0.015 −0.007 0.007 0.019
0.015 −0.022 0.036 0.007 −0.042
0.007 −0.036 0.013 0.012 −0.038
0.007 0.007 −0.012 −0.060 0.004

−0.019 0.042 −0.038 −0.004 0.124

⎤
⎥⎥⎥⎥⎦.

(A3)
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