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Transition to the Haldane phase driven by
electron-electron correlations

A. Jażdżewska1, M. Mierzejewski 2, M. Środa 2, A. Nocera3, G. Alvarez4,
E. Dagotto 5,6 & J. Herbrych 2

One of the most famous quantum systems with topological properties, the
spin S = 1 antiferromagnetic Heisenberg chain, is well-known to display exotic
S = 1=2 edge states. However, this spin model has not been analyzed from the
more general perspective of strongly correlated systems varying the electron-
electron interaction strength. Here, we report the investigation of the emer-
gence of the Haldane edge in a system of interacting electrons – the two-
orbital Hubbard model—with increasing repulsion strength U and Hund
interaction JH.We show that interactions not only form themagneticmoments
but also form a topologically nontrivial fermionic many-body ground-state
with zero-energy edge states. Specifically, upon increasing the strength of the
Hubbard repulsion and Hund exchange, we identify a sharp transition point
separating topologically trivial and nontrivial ground-states. Surprisingly, such
a behaviour appears already at rather small values of the interaction, in a
regime where the magnetic moments are barely developed.

The precise role of the electron-electron interaction in many con-
densed matter systems is still under much debate. From the high cri-
tical temperature superconductivity of copper- and iron-based
compounds to the magnetic properties of idealized spin models,
strong correlations appear crucial for our understanding of materials
physics. In parallel, topology in various compounds has been typically
realized and investigated at the level of non-interacting band struc-
tures in the presence of spin-orbit coupling. However, the detailed
study of the Coulomb correlation effects intertwined with topological
physics has barely started and represents one of the grand challenges
of present-day theoretical and experimental physics.

In particular, in one of the most famous topologically nontrivial
systems, i.e., the S = 1 antiferromagnetic (AFM) Heisenberg model
HS = J∑ℓSℓ ⋅ Sℓ+1 on a one-dimensional (1D) lattice geometry, the spin-
spin interactions are necessary to form the zero-energy edge states,
which is the hallmark of topological states. In his seminal work1,2, Hal-
dane showed that integer S = 1,2, . . . and half-integer S = 1=2,3=2, . . .
spin systems behave fundamentally different: the former are gapped

while the latter are gapless. Affleck, Kennedy, Lieb, and Tasaki (AKLT)
proved3 that the ground-state of S = 1 chains, when generalized
including biquadratic interactions, can be expressed as a valence bond
state (VBS) composed of interacting S = 1=2-like singlets. In this picture,
the AKLT state, when defined on an open chain, has two unpaired
S = 1=2 spins at the edges of the system, forming zero-energy modes.

The existence of topologically protected edge states in S = 1 chains
has been shown by extensive theoretical4–7 and experimental8–13 studies.
Also, the road to the Haldane states from well-formed S = 1=2 spins has
been studied. The AKLT VBS state initiated various investigations of
extended Bose Hubbard model (containing nearest-neighbor
interactions)14,15 and ladder-like S = 1=2 systems16–18. In the latter, the
topologicalS = 1 Haldanephase is a consequenceof competitionbetween
various kinetic terms (i.e., ferromagnetic rung exchange or AFM frustra-
tion) or unpaired sites at the edgesof overall AFMsystems. Although such
systems are fruitful playground for theoretical investigations and even are
realized in cold atoms in optical lattice setups11, they do not fully capture
the physics of solid-state compounds. In real low-dimensional materials19,
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the S = 1 moments should arise due to the electron-electron correlations
in a multi-orbital Hubbard model, which is technically challenging.
Because the S = 1=2 moments themselves are already an effective
description of some fermionic systems, such analysis is usually unneces-
sary formanycompounds. But inmore refineddescriptions, theCoulomb
repulsion and Hund’s coupling not only cooperate but also can
compete20,21. Depending on their specific values, the Mott localization of
electrons and the formation ofwell-developed spins canoccur in portions
of the phase diagram. As an example, in the largest family of S = 1 chains,
the nickel-based compounds19, the two eg electrons of Ni+2 ions are
necessary to form the S = 1 spins due to the Hund’s rule that maximizes
the on-site magnetic moment. For AgVP2S6 or Tl2Ru2O7, the S = 1 spins
develop, instead, on the t2g orbitals of V+3 or Ru+4, respectively. In all the
previously mentioned compounds, the emergence of the topological
states is unknown when described from the more fundamental perspec-
tive of quantum mechanically fluctuating individual mobile electrons,
including electron-electron interaction.

To fully understand how the topological state in S = 1 chains
emerges froma fermionic description, one has to focus on the effects of
electron interaction within the multi-orbital systems in which Hubbard
and Hund’s couplings are crucial ingredients. Here, we demonstrate
that these couplings are sufficient for the onset of the topologically
nontrivial phase. Specifically, upon increasing the strength of the Cou-
lomb repulsion, we identify a previously unknown transition between
topologically trivial and nontrivial ground states. Our analysis unveils
the threshold value of the interaction Uc where the Haldane gap opens.
Although at Uc we also identify the emergence of zero-energy edge
states and finite string order correlations (the signature properties of
S = 1 Haldane phase), surprisingly, the magnetic moments are far from
being fully developed, and spin excitations still resemble those in the
regime of weak U→0. Consequently, we here report that the Haldane
phase is not limited by having S = 1 moments. Specifically, its general-
ized existence can extend to unexpectedly small values of the interac-
tion U~W, with W being the kinetic energy half-bandwidth.

Results
From two-orbital to Heisenberg model
We employ the zero-temperature density matrix renormalization
groupmethod4,22,23 (DMRG) to solve the 1D two-orbital Hubbardmodel

(2oH) at half electronic filling (n = 2, i.e., two particles per site; one
particle per orbital) and zero total magnetization Sztot = 0, relevant for
Ni+2-based compounds. The 2oH is given by

HH =
X
γγ0‘σ

tγγ0 cyγ‘σcγ0‘+ 1σ +H:c:
� �

+U
X
γ‘

nγ‘"nγ‘#

+U 0X
‘

n0‘n1‘ � 2JH
X
‘

S0‘ � S1‘

+ JH
X
‘

Py
0‘P1‘ +H:c:

� �
:

ð1Þ

Here: ℓ = 1,…, L represents the site index, γ = 0, 1 the orbital index, and
σ =↑,↓ the spin index. Thismodel is generic and it canbederived from
matrix elements of the fundamental 1/r Coulomb repulsion on the
basis of atomic orbitals, following the Kanamori procedure24. Although
challenging, the above model contains the most generic many-body
interactions found in multi-orbital systems: U and U 0 =U � 5JH=2
represent the intra- and inter-orbital electron-electron Coulomb
repulsion, respectively, while JH accounts for the Hund rule, i.e.,
ferromagnetic exchange between spins at different orbitals; finally,
Py
0‘P1‘ with Py

γ‘ = c
y
γ"‘c

y
γ#‘ represents the doublon-holon exchange. We

will focus on degenerate bands with t00 = t11 = t =0.5 [eV], t01 = t10 = 0,
and in the following,wewill use the half-bandwidth of kinetic energy as
a unit, i.e.,W = 2t = 1[eV]. While we will mostly consider the JH/U = 0.25
case, other values of the Hund exchange will also be investigated (see
Supplementary Note 1). Note that the Sγℓ operators represent the spin-
1/2 of electrons and that the above model preserves the SU(2)
symmetry provided that U 0 =U � 5JH=2 and the doublon-holon
exchange term is included25.

The standard probe of spin excitations is the momentum q and
energy ω resolved dynamical spin structure factor S(q, ω), which is the
Fourier transform of the non-local Green’s functions hhT‘T‘0 iiω (see
Methods), with Tℓ as the total on-site spin Tℓ =∑γSγℓ. The calculated
S(q, ω) is routinely compared to inelastic neutron scattering (INS) or
resonant inelastic X-ray scattering data, also in the case of S = 1 com-
pounds. With increasing strength of interaction U, the 2oH spectrum
(Fig. 1A) develops from a continuum of S = 1=2-like excitations at
U = 026,27 to thewell-establishedmagnon-like excitations28,29 of the S = 1

Fig. 1 | Spin excitations. A Evolution of the spin excitations, as measured by the
dynamical spin structure factor S(q, ω), with increasing strength of electron-
electron interaction U for a system of L = 80 sites and JH/U =0.25. The frequency
scale was renormalized by the effective spin exchange J = 2t2/(U + JH). White lines in
the left toppanel represent the two-spinon continuumof theU =0Hubbardmodel,
while the line in the bottom right panel depicts the magnon dispersion of the S = 1

Heisenbergmodel. In the openboundary systems considered here, the zero-energy
Haldane edge states are expected at ω =0. However, the large intensity of this
modes can blur the spectra’s details. To avoid this issue, we have evaluated the spin
excitations only in the bulk of the system (seeMethods).B Totalmagneticmoment
per site T2 =SðS + 1Þ and charge fluctuations δn vs. interaction strength U. Note T2

starts at 0.75 for non-interacting U =0 electrons.
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Heisenbergmodel at largeU >>W. Renormalizing the frequencyby the
effective spin exchange, J = 2t2/(U + JH)20, yields qualitative agreement
between the models at U/W≃ 4. As expected, for such value of inter-
action U, the average total magnetic moment is almost maximized
T2 =SðS + 1Þ ’ 2 and the charge fluctuations δn = 〈n2〉 − 〈n〉2 are van-
ishing (Fig. 1B).

The artificial broadening needed in the dynamical-DMRG
method30,31, which physically mimics the influence of disorder, finite
temperature, and measurements-device resolution, prevents us from
extracting accurate values of the magnon gap directly from the spec-
trum of S(q, ω). Instead, the gaps can be obtained from the difference
in ground-state energies of two magnetization sectors with different
Sztot (with ΔS being the magnetization difference) at fixed electron
density n. It is important to note that when working on a finite-size
lattice, the ΔS = 1 excitations of 2oH are always gapless when extra-
polated to the thermodynamic limit L→∞ (Fig. 2A). ForU→0, the gapless
spin excitationsmanifest the physics of non-interacting fermions, with
an inverse-linear dependence on the system size Oð1=LÞ of the gap
according to Lieb-Schultz-Mattis theorem32. In the opposite limit of the
S = 1 Heisenberg model at U >>W, the gapless ΔS = 1 excitation origi-
nates in a four-fold degenerate ground-state (two-fold in the Sztot = 0
sector) with two S = 1=2 edge states29,33. For a finite L, these edge states
are split due to their overlap34, which decays exponentially with
increasing system size. See large U data in Fig. 2A. Thus, within the
open boundary condition system with edge states, the true magnon
gap ΔS can be extracted from ΔS = 2 excitations4,35,36. Still, for U→0, the
magnons are gapless with Oð1=LÞ size dependence of the gap.

On the other hand, increasing the strength of U changes the nat-
ure of the scaling. At largeU, we observe a saturation to a finite value in
the L→∞ limit. This saturation is to the well-known Haldane gap ΔS/
J≃0.41 for U ≳ 4, confirming the accuracy of our procedure. Crucially,
the finite-size scaling varying U reveals a novel critical (Hund JH
dependent, see Supplementary Note 1) value of the interaction

Fig. 2 | Spin gaps. A Finite-size scaling of ΔS = 1 (left panel) and ΔS = 2 (right panel)
spin excitations for JH/U =0.25 and L∈ {10, 20,…, 100}. Line color code represents
the value of the interactionU. BU dependence of the extrapolatedmagnon gaps in
units of W. Top to bottom: JH/U =0.05, 0.10, …, 0.40. Inset depicts the same data
but renormalized by the effective spin exchange J. The saturation to the Haldane
gap ΔS/J≃0.41 is clearly visible (red dashed line).

Fig. 3 | Edge spin correlations. A Distance ℓ dependence of the zero-frequency
ω =0 dynamical spin-spin correlations ð�1Þ‘hhTz

1T
z
‘ iiω=0 for various values of

interactionU (denoted by color code). The results are normalized by the ℓ = 1 value
of the correlation function. B Edge-edge jhhTz

1T
z
Liiω =0j (left panel) and edge-bulk

jhhTz
1T

z
L=2iiω =0

j (right panel) dynamical spin correlations vs. interaction strength U.
At Uc, we observe the appearance of finite edge-edge correlations, saturating at
U >>W to the value given by the S = 1 Heisenberg model (red dashed line).

C Extracted, Eq. (2), edge correlation length ξe vs. interaction strength U. Insets
depict examples of spin-spin correlations for two system sizes (L = 60 and
L = 80, together with fitted exponentials / expð�‘=ξeÞ. All data are calculated at
JH/U =0.25.D Interaction U/W—Hund exchange JH/U phase diagram on the basis of
inverse edge correlation length 1/ξe for L = 60. White points depict Uc obtained
from the spin gap ΔS opening, while the white line represents JH = t2/U.
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Uc =Uc(JH) where the gap opens (Fig. 2B). For example, for JH/U =0.25,
the magnons become gapped at Uc/W≃0.9.

A remarkable result of our computational investigations is that
themagnon gap ΔS opens at a value of the interactionU =Uc for which
the overall spin excitations are far from the S = 1 Heisenberg model
magnon-like spectrum. In fact, for U/W ~ 1, the spin excitations still
visually resemble the non-interacting continuum of S = 1=2-like
moments, though with redistributed spectral weights (Fig. 1A).

Zero-energy edge modes
As mentioned, the exponential in the system size dependence of the
ΔS = 1 gaps (Fig. 2A) indicates the presence of edge states. To quantify
them, we analyze (Fig. 3) the zero-frequencyω =0 dynamical spin-spin
correlation functions between the edge and the bulk of the system, i.e.,
the non-local Green’s functions ð�1Þ‘hhTz

1T
z
‘ iiω=0, capable of capturing

zero-energy modes. Here, the (−1)ℓ prefactor removes the AFM stag-
gered pattern. At small U, the spin correlations decay exponentially
with distance ℓ (Fig. 3A), as expected for a paramagnetic region.
Increasing U leads to a slower decay, although still exponential. At
U≃Uc, the ω = 0 correlations are approximately site-independent.
Note that this does not originate in any long-range order because the
value of spin correlations decays with the system size (see Fig. 3B and
the discussion below).

Interestingly, a characteristic V-shape of correlations develops
above Uc. This is the manifestation of the edge states present at the
(open) boundaries of the system5. In the S = 1 Heisenberg model, the
zero-energy modes are not localized at a single edge site but decay
exponentially with the correlation length ξS≃ 6.1. This leads to finite
(exponentially suppressed) AFM spin correlations up to half ℓ ~ L/2 of

the system. The increase of hhTz
1T

z
‘ iiω=0 for ℓ > L/2 is exactly a con-

sequence of correlated edge states: the edge-edge correlations are
finite, while the edge-bulk correlations are vanishing.

To assess the development of spin-spin correlations in the 2oH
system, especially the correlated edge states, wemonitor the behavior
of the edge-edge and edge-bulk (Fig. 3B) values vs. the interaction U.
The edge-edge correlations acquires a non-zero value at Uc (see Sup-
plementary Note 2) and displays small finite-size effects. On the other
hand, the finite value of the edge-bulk correlations decreases with
system size L and vanishes in the L→∞ limit.

Furthermore, we can extract the interaction dependence of the
edge correlation length (Fig. 3C) by fitting ℓ < L/2 data of the 2oH to

ð�1Þ‘hhTz
1T

z
‘ iiω=0 / expð�‘=ξeÞ : ð2Þ

For U/W > 4 we reproduce ξe≃ ξS≃ 6.1, consistent with dynamical spin
structure factor S(q, ω) investigations of the S = 1 Heisenberg model
physics. Interestingly, the extracted ξ diverges at Uc. This divergence
reflects the site-independent correlations in this region (see Supple-
mentary Note 2).

Topological phase transition
The opening at Uc of a spin gap ΔS, the emergence of edge-edge cor-
relations hhTz

1T
z
Liiω=0, and the diverging edge correlation length ξe all

consistently indicate the existence of an interaction-induced topolo-
gical phase transition between topologically trivial and nontrivial
regions, with the emergence of the Haldane edge states at Uc. The
topological phases canbe identified by investigating the entanglement
spectrumof the system37,38, i.e., the Schmidt coefficients λα of left/right
( Lj i= Rj i) decomposed ground-state gs

�� �
=
P

αλα Lj iα Rj iα , with λ2α being
the eigenvalues of the reduced density matrix of the partition. In the
topologically nontrivial region, all λα’s are evenly degenerate. Conse-
quently, the entanglement entropy SvN = �Pαλ

2
α ln λ2α cannot drop

below the ln 2 value for any cut of the system, consistent with the
presence of entangled S = 1=2 edge states. The analysis of the 2oH
model indicates that this condition is fulfilled for U ≳Uc (Fig. 4A).
Detailed investigation of the largest gap (see Supplementary Note 3) in
the entanglement spectrum (Fig. 4B) shows that the trivial region
U <Uc does not have any apparent structure in the λα eigenvalues. On
the other hand, the largest gap decays exponentially with system size
for any U >Uc (though, with slower decay in the proximity of Uc) and
vanishes in the thermodynamic limit L→∞.

In the context of the S = 1 Heisenberg model, the topological
Haldane phase can also be detected by studying the non-local string
order parameter33,39,40

Osð‘Þ= � Am exp iθ
Xm+ ‘�1

n=m+ 1

An

 !
Am+ ‘

* +
, ð3Þ

which for θ =π andA‘ = S
z
‘ measures the breaking of the discrete Z2 × Z2

hidden symmetry (i.e., the dihedral group of π rotations). It is impor-
tant to note that the phase θ =π was obtained via the valence bond
state structure of the AKLT state. For a generic spin-S Heisenberg
model, the string order phase becomes spin-dependent θ=θðSÞ, i.e., it
has to reflect the properties of a given VBS ground-state41–44.

In the caseof the 2oHmodel, forU >Uc, theπ-string orderOs does
not decay (Fig. 5), as expected in theS = 1 Haldane phase. However, it is
important to note that the total spin operator of 2oH, A‘ =T

z
‘ , involves

not only S = 1 but also S = 1=2 degrees of freedom and that for U≃Uc

the magnetic moment deviates strongly from S = 1 (Fig. 1B). Never-
theless, we observe a finite string order all the way down to U =Uc ~W,
showing that this type of order can exist in a fermionic system as well,
even without well-defined moments. Interestingly, consistent with the
topological phase transition at Uc, for U <Uc the string order vanishes,
and the system size dependence changes from weakly increasing with

Fig. 4 | Topological phase transition. A Interaction U dependence of the entan-
glement spectrum �2 ln λα , obtained at JH/U =0.25 using a L = 140 site system
partitioned in half. Color code depicts the number of occurrences of a given
eigenvalue (number of degeneracies). The values for the S = 1 Heisenberg model
are also displayed (red dashed lines). B Analysis of the largest gap in the entan-
glement spectrum for various system sizes L = 60, 80, 100, 120, 140 (see also
Supplementary Note 3).
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L (for U >Uc) to weakly decreasing with L (for U <Uc). The latter is
consistent with the slow scaling of Os for S = 1=2 moments45.

Discussion
The non-local character of the topological states allows for phase
transitions even in 1D (rare phenomena due to the Mermin-Wagner
theorem). Our numerical results indicate that the correlated one-
dimensional two-orbital Hubbard model has a sharp transition at
Uc ~W between a topologically trivial region and a generalized fer-
mionic Haldane phase with edge states. Surprisingly, the magnetic
moments are not yet fully developed in a vast region of the topological
phase (Fig. 1B), and thus the S = 1 Heisenberg model-like description
cannot be applied directly, and it is not necessary to describe the
physics of the fermionic generalized Haldane phase presented here.
Actually, our analysis shows that the gapped ground-state with finite
string order survives down to U ∼W ∼OðtÞ. Consequently, this result
indicates that a VBS-like state, similar to the AKLT state, could be
formulated46 even with mobile fermions. It seems true despite the fact
that the length scale of spin-spin correlations indicates the spatially
extended character of the ground-state, although withmoments small
in value. Our detailed interaction U and Hund exchange JH investiga-
tion (Fig. 3D) indicates that the SU(2) symmetric systemundergoes the
transition at JH≃ t2/U, and consequently a finite U ~W is necessary for
the onset of the non-topological–topological phase transition in real
materials.

Furthermore, our results indicate that the details of the band
structure, i.e., of the hopping matrix tγγ0 , are not crucial for our find-
ings. Up to now, we have considered degenerate bands, i.e.,
t00 = t11 = 0.5 [eV] and t01 = t10 = 0. In Fig. 6we present additional results
of edge correlation length ξe (discussed in Fig. 3) and string order
parameter OsðL=2Þ (discussed in Fig. 5) for non-degenerate bands
(t00 = 0.5 [eV], t11 = 0.3 [eV], t01 = t10 = 0, with W = 1 [eV]) and strongly
hybridized orbitals (t00 = 0.5 [eV], t11 = 0.3 [eV], t01 = t10 = 0.5 [eV], with
W = 1.8 [eV]). For all considered cases, we find the transition (identified
by diverging ξe and the onset of non-zeroOs) to theHaldane phase at a
finite value of interaction U. Consequently, our results are relevant for
various low-dimensional S = 1 compounds, irrespective of kinetic
energy details, i.e., for recently investigated platforms such as the van
der Waals oxide dichlorides MOX2 (M=V, Ta, Nb, Ru, Os, and X =
halogen element)47 or metal-organic structures48. Another promising
candidate to test the prediction of our work is the van derWaals quasi-
1D material OsCl4

49.
Also, one could expect that for JH >>U (i.e., when the system

always has well-developed on-site triplets formed by electrons), even

small interaction will induce the Haldane phase. However, such region
of parameter space is unrealistic because for JH/U >0.4 the inter-orbital
interaction U 0 =U � 5JH=2 becomes attractive U 0 <0. It is therefore
evident that setups with coupled S = 1=2 triplets represent, from the
electron system perspective, broken spin rotation with U 0≠U � 5JH=2.
Previous analysis of the Haldane phase in such setups indicates its
fragility with respect to charge fluctuations16–18. Our results indicate
that within a two-orbital setup, the Haldane phase is robust down to
rather small values of the interactionU, in a regimewhere themagnetic
moments are barely developed. Thus, our results are generalizing the
ideas of Haldane for S = 1 spin Heisenberg models into unexplored
territory involving delocalized electrons. The structure of Haldane
edge states was previously investigated, e.g., via INS experiments10.

Fig. 5 | String order. InteractionU dependence of the string order parameterOcð‘Þ
with θ =π phase at ℓ = L/2 distance in bulk (m = L/4). Upper insets depictsOcð‘Þ vs.
distance ℓ for U =0.5, 1.0, 3.0, 8.0 (left to right). The lower inset depicts a zoom to

theproximity of the phase transitionUc, with the shaded regiondepicting the trivial
phase. All data are evaluated at JH/U =0.25 using L = 40, 60, 80, L = 100 site systems.

Fig. 6 | Band structure dependence. Interaction U/W dependence of A edge
correlation length ξe and B string order parameter OsðL=2Þ for degenerate, non-
degenerate bands, and also for the strongly hybridized case (see text for details).
Main panels depict L = 60 and JH/U =0.25 data, while insets depict finite-size scaling
of strongly hybridized cases.
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However, our results indicate that the energy gap separating the edge
modes from the magnon-like excitations can be small (even expo-
nentially small at the transtion U ~Uc, see Fig. 2B). Similarly, the
intensity of such modes is diminishing close to the transition (see
Fig. 3B). As a consequence, neutron scattering (as a global probe of the
sample)wouldnot necessarily be the best tool. An alternativewould be
local probes, e.g., nuclear magnetic resonance experiments50,
exploiting the large edge correlation length ξe >> ξS (quantified by the
decay of staggered magnetization at the edges of the system).

Methods
DMRG method
TheHamiltonians andobservables discussed herewere studied using
the zero-temperature DMRG method4,23 within the single center site
approach22, where the dynamical correlation functions are evaluated
via the dynamical-DMRG30,31, i.e., calculating spectral functions
directly in frequency space with the correction-vector method using
the Krylov decomposition31. We have kept up to M = 3072 states,
performed at least 15 sweeps, and used A = 0.001 vector-offset in the
single-site DMRG approach, allowing to accurately simulate system
sizes up to L≲ 140 sites of the two-orbital Hubbard model. Conse-
quently, the error bars on the numerical results are smaller than the
data points.

Dynamical spin structure factor
The dynamical spin structure factors are evaluated as

Sðq,ωÞ= 2
L+ 1

XL
‘= 1

cos ð‘� L=2Þq� � hhT‘TL=2iiω, ð4Þ

where q = nπ/(L + 1), n = 0,…, L, and non-local Green’s function is given
by

hhTmTniiω = � 1
π

Im gsjTm
1

ω+ iη� H + ϵ0
Tnjgs

� 	
: ð5Þ

Here gs
�� �

represents the ground-state with energy ϵ0. The S(q, ω)
spectra presented in Fig. 1A of the main text were calculated with the
frequency resolution δω/J≃0.03 and broadening η = 2δω [note the U
dependence of the spin exchange J = 2t2/(U + JH)].

Largest gap in the entanglement spectrum
In order to find the largest gap in the entanglement spectrum,
first we have calculated consecutive gaps δn = minðln λn � ln λn�1;

ln λn+ 1 � ln λnÞ. The largest gap is then obtained from maxðδ1,δ2, . . . Þ.

Data availability
The data generated in this study have been deposited in the Zenodo
database under the accession code https://doi.org/10.5281/zenodo.
7854617.

Code availability
We have used the DMRG++ computer program developed at Oak
Ridge National Laboratory. The code that supports this study is avail-
able at theOakRidgeNational Laboratory repository https://code.ornl.
gov/gonzalo_3/dmrgpp. The input scripts for the DMRG++ package to
reproduce our results can be found at https://bitbucket.org/
herbrychjacek/corrwro/ and on the DMRG++ webpage.
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