Temperature-Doping Phase Diagram of the 2D Holstein Model

P. Dee 1,2, K. Nakatsukasa 1,2, Y. Wang 3, B. Nosarzewski 4,5, E. Huang 4,5, T. Devereaux 4,5, S. Johnston 1,2

1Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN

2Joint Institute for Advanced Materials, The University of Tennessee, Knoxville, TN

3Département de Physique, Université de Sherbrooke, Québec, Canada

4Stanford Institute for Materials & Energy Sciences, Stanford University

5SLAC National Accelerator Laboratory

March 5, 2018
Model and Methods

\[\hat{H} = -\sum_{\langle i,j \rangle, \sigma} t_{i,j} \hat{c}_{i,\sigma}^\dagger \hat{c}_{j,\sigma} - \mu \sum_{i, \sigma} \hat{n}_{i,\sigma} + \sum_{i} \left[\frac{\hat{P}_i^2}{2M} + \frac{1}{2} M \Omega^2 \hat{X}_i^2 \right] - \sum_{i, \sigma} g \left(\hat{n}_{i,\sigma} - \frac{1}{2} \right) \hat{X}_i \]

(a)

\[\overset{\sim}{\sim} = \overset{\sim}{\sim} + \text{Neglected crossing diagram} \]

(b)

\[\text{First order vertex correction (neglected)} \]

Figure: P. Dee, et. al. (To be published)

Figure: Y. Wang, et. al. (2016)
Superconductor Science and Technology. 29

- Migdal’s Approx: \(\Gamma \sim \lambda \Omega / E_F \sim \sqrt{m/M} \sim 0.01 \) where \(\lambda = g^2 / (W \Omega^2) = 0.3 \)
What we know and what we don’t.

- Holstein exhibits metal-insulator transition as function of doping\(^1\).
- Peierls-CDW at half-filling and s-wave SC at lower doping\(^1\).
- NNN hopping enhances pairing correlations\(^2\).
- What is the nature of phase boundary \(T_c\) vs. \(\langle n \rangle\)?
- Is there a SC dome?

How do we obtain T_c?

- Extrapolate inverse susceptibilities.
- Works well for χ^{SC}.
- χ^{CDW} is expected to obey Ising universality class

$$\chi^{\text{CDW}} \propto \left| \frac{T - T_c}{T_c} \right|^{-7/4}$$

- We notice significant finite size effects in χ^{CDW}.

\[\Omega = 1.0t \]
\[\langle n \rangle = 0.8 \]
\[T_{C^{\text{CDW}}} = 0.041t \]
\[T_{C^{\text{SC}}} = 0.064t \]
Finite-size effects on T_c: $L = \sqrt{N} = 256, 128, 64, \text{ and } 32$

\[T_{c,\text{CDW}}(L \geq 128) \approx \lim_{L \to \infty} T_{c,\text{CDW}}(L) \]

Most finite size calculations are even smaller

$L < 32$ poorly represented by Ising-like susceptibility fit.
ME Theory Phase Diagram

Isotropic e-ph coupling and NN hopping only. All points obtained from lattice sizes $\geq 128 \times 128$.

The SC region is not simply monotonic as expected for conventional SC, rather we get a dome-like structure.
Incommensurate Peaks in $\chi_{\text{CDW}}(q)$

Figure: Incommensurate peaks in $\chi_{\text{CDW}}(q)$ for $\langle n \rangle \sim 0.8$ and $\Omega = 1.0$ near the phase transition temperature on a smaller 64×64 lattice.
Addition of NNN Hopping

\[\Omega = 1.0t \]

\[t' = 0 \]

\[\frac{T_c}{t} \]

(a) CDW (π, π)

(b) CDW (π, π)

SC

Temperature-Doping Phase Diagram of the 2D Holstein Model
Results: DQMC vs. ME Theory $\lambda = 0.30$ (12 × 12)
Conclusion and Further Questions

...on the phase diagram

- Distinct CDW phase near half-filling and s-wave SC phase away from half-filling.
- SC enhanced by increasing phonon frequency and NNN hopping. CDW is suppressed by both.
- Non-monotonic behavior seen in SC phase. Will it remain even with vertex corrections?

...on our method

- Access to large finite clusters $\sim 256 \times 256 \rightarrow$ largest value tested.
- Qualitatively agrees with DQMC on most doping, but overestimates T_c on the average.

Thank you for your attention!
The finite-temperature Green’s function

Imaginary time-ordering operator

Fermion operators: \(\hat{c}_{k,\sigma}(\tau) = e^{\hat{H}_\tau} \hat{c}_{k,\sigma} e^{-\hat{H}_\tau} \)

\[
G_{\sigma,\sigma'}(k, \tau; k', \tau') = -\left\langle \hat{T}_\tau \hat{c}_{k,\sigma}(\tau) \hat{c}_{k',\sigma'}^\dagger(\tau') \right\rangle \\
= -\text{Tr} \left[\hat{\rho} \hat{T}_\tau \left\{ \hat{c}_{k,\sigma}(\tau) \hat{c}_{k',\sigma'}^\dagger(\tau') \right\} \right]
\]

Statistical operator: \(\hat{\rho} = e^{-\beta(\hat{H} - \hat{\Omega})} \)

\[
G_{\lambda,\lambda'}(i\omega_n) = \frac{1}{\beta} \int_0^\beta G_{\lambda,\lambda'}(\tau) e^{i\omega_n \tau}, \quad \text{where} \quad \omega_n = \frac{(2n + 1)\pi}{\beta} \quad \text{(fermions)}
\]
Working in Momentum space

\[\hat{H} = \sum_{k,\sigma} \epsilon_k \hat{c}_{k,\sigma}^\dagger \hat{c}_{k,\sigma} + \Omega \sum_{k} \left(\hat{a}_k^\dagger \hat{a}_k + \frac{1}{2} \right) - \frac{g}{\sqrt{2N_s M\Omega}} \sum_{k,k',\sigma} \left(\hat{a}_{k'-k} + \hat{a}_{-(k'-k)}^\dagger \right) \hat{c}_{k',\sigma}^\dagger \hat{c}_{k,\sigma} \]

- Electron dispersion:

\[\epsilon_k = -2t \left(\cos(k_x d) + \cos(k_y d) \right) - \left(\mu - \frac{\alpha^2}{k} \right). \]

- We will use finite temperature many-body Green's functions to make equilibrium calculations.

\[G_{\sigma}(k, i\omega_n) = \left[i\omega_n - \epsilon_k - \Sigma_{\sigma}(k, i\omega_n) \right]^{-1} \]

\[D(q, i\nu_n) = \left[-M(\Omega^2 + \nu_n^2) - \Pi(q, i\nu_n) \right]^{-1} \]
Propagators in Migdal Theory

(a) \[\begin{align*}
\text{Propagators} &= \text{Propagators} + \text{Interaction} + \text{Propagators} \\
\end{align*} \]

(b) \[\begin{align*}
\text{Propagators} &= \text{Propagators} + \text{Interaction} \\
\end{align*} \]
Susceptibilities

• Singlet Pairing (SC) Susceptibility

\[
\chi_{SP}(q = 0) = \frac{1}{N} \sum_{i,j} \int_0^\beta d\tau \langle \hat{c}_{i\uparrow}(\tau) \hat{c}_{i\downarrow}(\tau) \hat{c}_{j\downarrow}^\dagger(0) \hat{c}_{j\uparrow}^\dagger(0) \rangle
\]

• CDW Susceptibility

\[
\chi_{CDW}(q) = \frac{1}{N} \sum_{i,j,\sigma,\sigma'} e^{i\mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \int_0^\beta d\tau \langle \hat{n}_{i,\sigma}(\tau) \hat{n}_{j,\sigma'}(0) \rangle_c
\]
Phonon Dispersion: $\lambda = 0.3$

- (a) $\text{Im}[D(q, \omega)]$ for $\Omega = 1.0t$
- (b) $\text{Im}[D(q, \omega)]$ for $T = 0.17t$
- (c) $\text{Im}[D(q, \omega)]$ for $T = 0.22t$
- (d) $\text{Im}[D(q, \omega)]$ for $T = 0.26t$
- (e) $\text{Im}[D(q, \omega)]$ for $T = 0.34t$

- (a) $\text{Im}[D(q, \omega)]$ for $T = 0.17t$
- (b) $\text{Im}[D(q, \omega)]$ for $\Omega = 0.1t$
- (c) $\text{Im}[D(q, \omega)]$ for $\Omega = 0.5t$
- (d) $\text{Im}[D(q, \omega)]$ for $\Omega = 1.0t$
- (e) $\text{Im}[D(q, \omega)]$ for $\Omega = 1.5t$
Results: One-Quarter Filling $\langle n \rangle = 0.50$ (4 × 4)
Results: DQMC vs. ME Theory $\lambda = 0.30$ (10 × 10)
Results: DQMC vs. ME Theory $\lambda = 0.50$ (10×10)

- Large enough λ reveals breakdown of ME theory.
- DQMC shows rapid enhancement of CDW and weak pairing correlations.
- I. Esterlis et al. (2017) claim ME theory agrees for $\lambda \lesssim 0.4$ around half-filling.