# Effects of Site Disorder on An Effective Spin-1/2 Triangular-Lattice Antiferromagnet Ba<sub>3</sub>CoSb<sub>2</sub>O<sub>9</sub>

## **Qing Huang**

University of Tennessee/Oak Ridge National Lab

03-26-2018





#### **Overview**

1. Why Ba<sub>3</sub>CoSb<sub>2</sub>O<sub>9</sub>? Why doping with Sr?

2. Results and discussions

3. Summary





#### $Ba_3CoSb_2O_9$

- 1. Triangular-lattice Heisenberg antiferromagnet, with an effective spin-1/2 moment. Ideal triangular lattice, no Dzyaloshinskii– Moriya (DM) effect.
- 2. Heisenberg coupling J (~18K) is quite appropriate

$$T_{N} = 3.8K$$



Space group: P63/mmc

H.D. Zhou, et al. PRL 109, 267206(2012)





#### Dzyaloshinskii- Moriya (DM) effect.

1. The DM effect is a contribution to the total magnetic exchange interaction between two neighboring magnetic spins.

$$H_{DM} = D_{ij} \cdot (S_i \times S_j) \qquad D_{ij} \propto (r_i \times r_j)$$

2. It can cause weak ferromagnetic behavior in an antiferromagnet.







#### Ba<sub>3</sub>CoSb<sub>2</sub>O<sub>9</sub>, Up up down (UUD) phase



T. Susuki, et al. PRL 110 267201 (2013)





#### Ba<sub>3</sub>CoSb<sub>2</sub>O<sub>9</sub>, quantum spin fluctuations



J. Ma and H. D. Zhou et al. PRL 116 087201 (2016)

Intrinsic quantum effects: The linear and nonlinear spin-wave theories (SWTs) are inadequate to explain intrinsic linewidth broadening and high-intensity continuum.





#### **Doping with Sr**

Recent studies on RbFe( $MoO_4$ )<sub>2</sub> show that the site disorder even on non-magnetic site could affect the UUD phase.









#### Ba<sub>2.8</sub>Sr<sub>0.2</sub>CoSb<sub>2</sub>O<sub>9</sub>, crystal structure



|   | Pure       | Doped      |
|---|------------|------------|
| a | 5.85475(3) | 5.85236(4) |
| b | 5.85475(3) | 5.85236(4) |
| С | 14.4498(1) | 14.4583(1) |
| α | 90         | 90         |
| β | 90         | 90         |
| Υ | 120        | 120        |





### $Ba_{2.8}Sr_{0.2}CoSb_2O_9$ , DC and AC susceptibility



The transition temperature is 2.9K, lower than pure sample.





#### Ba<sub>2.8</sub>Sr<sub>0.2</sub>CoSb<sub>2</sub>O<sub>9</sub> , DC and AC susceptibility



For comparison, in pure sample

$$\theta_{cw}$$
= -51K and  $\mu_{eff}$  = 5.23  $\mu_{B}$   $\theta$ = -12.5

Yoshihiro Doi et al 2004 J. Phys.: Condens. Matter 16 8923





#### $Ba_{2.8}Sr_{0.2}CoSb_2O_9$ , Magnetization



The UUD phase becomes weak or likely to disappear.





#### **Summary**

#### **Results:**

- 1.The transition temperature decreases by doping Sr
- 2.The UUD phase becomes weak or likely to disappear. **Order by site disorder!**
- 3.Doped sample has stronger quantum fluctuations. Interesting when compared with upper result.

#### Future plan:

- 1.Conduct elastic neutron scattering measurement and solve the magnetic structure at zero and finite fields
- 2.Conduct inelastic neutron scattering measurement to study the effects of site disorder on spin dynamics







## **Acknowledgements:**



Haidong Zhou, UTK



Tao Hong, ORNL



Jie Ma, Shanghai Jiao tong Univ



Eun Sang Choi, NHMFL



Zhilun Lu, HZB



Lu Li, University of Michigan

NSF DMR-1350002

Go Students program, ORNL



