First-principles exploration of thermodynamically stable Cs–O compounds

Jinseon Park1, Lizhi Zhang1, Mina Yoon1,2

1Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37916, U.S.A.

2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.

Part of this work was performed at CNMS, a DOE Office of Science User Facility that provides free access if the intent is to publish. (cnms.ornl.gov)
Motivation: cesium oxides as a low work function material

• Oxidation can significantly lower their work functions

Different oxides are introduced.
Exact composition was not provided.

A: Cs \[\square\] Cs_{11}O_{3}
B: Cs_{11}O_{3} \[\square\] Cs_{2}O_{2}
C: Cs_{2}O_{2} \[\square\] CsO_{2}

Application

• Recent applications as a low work function coating
 - Improvement in thermionic emission in thermionic energy convertor

<table>
<thead>
<tr>
<th></th>
<th>ϕ_{PE} (eV)</th>
<th>ϕ_{TE} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K/O:Si</td>
<td>1.73 ± 0.16</td>
<td>1.75 ± 0.28</td>
</tr>
<tr>
<td>Cs/O:Si</td>
<td>1.66 ± 0.27</td>
<td>1.72 ± 0.20</td>
</tr>
</tbody>
</table>

* work function of Silicon : 4.85 eV

- Improvement in electron injection in solar cells

V. Giorgis, et al., J. Appl. Phys. 120, 205108 (2016)
Discovery of a new class of 1D electrides with nontrivial band topology: Cs$_3$O

- **Electrides are ionic compounds where the anions are electrons**, making them promising for chemical synthesis and electronics.
- First-principles density functional theory calculations are coupled to a materials database search to analyze key materials’ properties and to investigate their detailed band structures.
- **The new class of 1D electrides** (Cs$_3$O and Ba$_3$N) is the first electrides with nontrivial band topology presenting band inversion and topologically protected quantum states.
- Experimental synthesis is a challenge.

Talk presented by M. Yoon (K12.00010)
Computational exploration of Cs-O: First-principles approach

• **Difficulties in experimental characterization of cesium oxides**
 - High air sensitivity (Low chemical stability)
 - Unusual large number of oxides
 - Poor crystallinity

• **Theoretical characterization**
 - First-principles density functional theory calculation (DFT) +
 global structure prediction with particle swarm optimization:
 (VASP + CALYPSO)
 - Exploring metastable crystal structures: Cs₃O, Cs₂O, CsO
 - Electronic structure analysis
 - Work function calculations

Computationally identified metastable configurations

\[
\Delta E_f = \frac{x E(Cs)_{bcc} + y E(O_2)}{2} (x + y)
\]

- Our results agree well with the experimental data.
- Our computational approach identifies new crystal structure that is energetically more stable than the experimentally synthesized one.
Crystal structures and electronic properties : Cs$_3$O

- New 1D based electride (P6$_3$/mcm)
- metals
- New 1D / 2D structures were identified.

Crystal structures and electronic properties: Cs$_2$O

<table>
<thead>
<tr>
<th>Composition</th>
<th>Formation energy (eV)</th>
<th>Space group</th>
<th>Direct gap (eV)</th>
<th>Global gap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs$_2$O</td>
<td>-0.925</td>
<td>Pnnm (58)</td>
<td>0.85</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-0.951</td>
<td>Pmmn (59)</td>
<td>0.33</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-0.988</td>
<td>Fd-3m (227)</td>
<td>0.67</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-0.992</td>
<td>Cm (8)</td>
<td>0.96</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>-0.992</td>
<td>R-3m (166)</td>
<td>0.97</td>
<td>0.52</td>
</tr>
</tbody>
</table>

- Cs$_3$O \rightarrow Cs$_2$O: opening of band gaps (<1eV, PBE)
- High band dispersion of conduction bands governed by metallic Cs states
- 2D layered structures were identified.
Crystal structures and electronic properties: CsO

<table>
<thead>
<tr>
<th>Composition</th>
<th>Formation energy (eV)</th>
<th>Space group</th>
<th>Direct gap (eV)</th>
<th>Global gap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsO</td>
<td>-0.939</td>
<td>Amm2 (38)</td>
<td>1.21</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>-1.017</td>
<td>P2₁/c (14)</td>
<td>1.92</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1.019</td>
<td>Immm (71)</td>
<td>1.71</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>-1.021</td>
<td>C2/m (12)</td>
<td>1.71</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1.031</td>
<td>P2₁/c (14)</td>
<td>1.02</td>
<td>-</td>
</tr>
</tbody>
</table>

- A noticeable hybridization between O and Cs states.
- Reduced band dispersion
- Band gaps further increase with O concentration: 1~2 eV
- 2D layered structures were identified.
Work functions

- Cs$_2$O and CsO compositions show low work function below 1.5 eV
- The change in the work function is in good agreement with experimental results.
- Newly found most stable structure of CsO turned out to have the lowest work function
- Configurations with low work function show 2D layered structure.
Summary

• Metastable structures of cesium oxides compounds (Cs$_3$O, Cs$_2$O, CsO) were predicted and characterized by using PSO and DFT.

• Cs$_3$O metastable structures show crystal and electronic structures that could be seen as electrides.

• Newly found most stable structure of CsO shows the lowest work function.

• Calculated work functions are in good agreement with the experimental results and structural condition that allows low work function is suggested.
Center for Nanophase Materials Sciences
A DOE User Facility for Creating, Characterizing, and Understanding Nanomaterials

Providing free access to staff expertise and equipment if intent is to publish results.

Proposals:
- Simple, two-page narrative
- Two general calls per year
- Short-term projects accepted continuously
- Joint proposals with neutron sources (SNS, HFIR)

Research areas:
- **Synthesis** – Soft matter (precision synthesis, selective deuteration), 2D materials, hybrid structures, epitaxial oxides
- **Nanofabrication** – Direct-write (3D) fabrication, e-beam lithography, multiscale fluidics, 10,000 sq. ft. cleanroom
- **Advanced Microscopy** – AFM, STM, aberration-corrected and *in situ* TEM/STEM, He-ion microscopy, atom-probe tomography
- **Chemical Imaging** – Multiple approaches based on mass spectrometry or optical spectroscopies
- **Functional Characterization** – Laser spectroscopy, transport, magnetism, electromechanical phenomena
- **Theory/Modeling, Data Analytics** – Including interactions and co-development with leadership-class, high-performance computing
- **Gateway to Neutron Sciences** – Deuterated materials, sample environments, multimodal measurements

cnms.ornl.gov
Computational approach

Crystal structure

Particle swarm optimization algorithm (PSO)

Electronic structure

Density functional Theory (DFT)

Randomly generated structures (particles)

Locally optimized structures

Next generation

Local optimization (VASP) → Evolution of particles (CALYPSO)

Particle Swarm Optimization Algorithm (PSO) + Other Techniques
CsO : stable structures

Work function: 1.07026 eV
Cs$_2$O: (meta)stable structures

166(R-3m)

(0 0 1)

Work function: 1.46748 eV