For all this to make sense, once we normalize to 1 at t=0
the normalization must remain. Otherwise particles will
be created or vanished varying time. Is this true?
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If v is normalized at t=0, it remains normalized at all times.
Crucial for all this to make sensel!



Expectation value of x

00 5 . Note: <x> can be
x|W(x. 1) dx time dependent.

(v) =

[ —20

Interpretation: <x> is the average of measurements
performed on an ensemble of identical systems.




Expectation value of momentum p

See two pages back
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In summary, for <x>and <p> we find
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X OR‘ZPGTQP 1S p "operator” is more
just "multiply by x complicated!

Many other operators are functions of x and p.
For instance, for the kinetic energy T=p?/2m use:
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By this procedure a "dictionary” between classical and
quantum quantities can be established.




Preliminaries to the uncertainty principle

Caution: this is not an independent principle but it arises
entirely from Sch. Eq. (see Ch. 3). Thys, if you do the

calculations right, it is always satisfied. But intuitively
it is intferesting to discuss it.
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This is true for any wave-like phenomenon, thus it has to
apply to the Sch. Eq. somehow as well.

De Broglie formula (2 years before W 2h
Sch. Eq.) said that electrons have p=
wave-like features, like photons do:
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Thus, if wavelength is known accurately, p is known
accurately. If wavelength is unknown, p is unknown.
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We will prove later (not a new law, but it is consequence of
Sch. Eq.) that the standard deviations satisfy:
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