Returning to the general combination:

$$
\chi=\binom{a}{b}=a \chi_{+}+b \chi_{-}
$$

What is the probability that the spin points say along the positive $x$ axis?

To answer this question, first you have to diagonalize the $2 \times 2$ Pauli matrix " $x$ ". Turns out the "eigenspinors" are:

$$
x_{+}^{(x)}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}},\left(\text { eigenvalue }+\frac{\hbar}{2}\right) ; \quad x_{-}^{(x)}=\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}},\left(\text { eigenvalue }-\frac{\hbar}{2}\right)
$$

The general combination ...

$$
\chi=\binom{a}{b}=a \chi_{+}+b \chi_{-} \quad x_{-}=\binom{0}{1}
$$

... can now be written (check!) as:

$$
\chi=\left(\frac{a+b}{\sqrt{2}}\right) \chi_{+}^{(x)}+\left(\frac{a-b}{\sqrt{2}}\right) \chi_{-}^{(x)}
$$

$$
(1 / 2)|a+b|^{2}
$$

is the probability of measuring spin up along $x$.

$$
(1 / 2)|a-b|^{2}
$$

is the probability of measuring spin down along $x$.
"Spin" practice problem for Test3. Start with:

$$
\chi=\binom{a}{b}=a \chi_{+}+b \chi_{-} \quad \chi_{-}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Consider example 4.2 book, page 169. An arbitrary normalized (check!) spin state is given (in Test3 may not be normalized)

$$
\chi=\frac{1}{\sqrt{6}}\binom{1+i}{2} \quad \text { Then, } \quad a=(1+i) / \sqrt{6} \quad \text { and } \quad b=2 / \sqrt{6}
$$

$$
\begin{array}{rlrl}
\text { prob. of }+\hbar / 2 \\
\text { if } S_{z} \text { measured } & =|(1+i) / \sqrt{6}|^{2} & & \text { prob. of }-\hbar / 2 \\
\text { if } S_{z} \text { measured } & =|2 / \sqrt{6}|^{2} \\
& =1 / 3 & & =2 / 3 .
\end{array}
$$

$$
\text { Use: }(1-i)(1+i)=1+(-i)(i)=1+1=2
$$

In the previous page we used the eigenspinors of the $z$-axis Pauli matrix:

To confirm this result you diagonalize a $2 \times 2$ matrix:

$$
\begin{aligned}
\sigma_{x} \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned} \longrightarrow\left|\begin{array}{cc}
-\lambda & \hbar / 2 \\
\hbar / 2 & -\lambda
\end{array}\right|=0 \longrightarrow \lambda^{2}=\left(\frac{\hbar}{2}\right)^{2} \Rightarrow \lambda= \pm \frac{\hbar}{2} \longrightarrow \begin{aligned}
& \text { construct } \\
& \\
& x \text { Pauli matrix }
\end{aligned} \longrightarrow \begin{aligned}
& \text { sotve determinant (check!); } \\
& \text { find eigenvalues }
\end{aligned}
$$

Finally find eigenvectors (check!):

$$
\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta}= \pm \frac{\hbar}{2}\binom{\alpha}{\beta} \longrightarrow\binom{\beta}{\alpha}= \pm\binom{\alpha}{\dot{\beta}}
$$

$$
\beta= \pm \alpha \quad \ldots \text { and finally normalize }
$$

Consider now the SAME given spinor but from the perspective of the eigenspinors of the $x$ Pauli matrix. You can use any basis after all.

$$
\begin{gathered}
\chi=\left(\frac{a+b}{\sqrt{2}}\right) \chi_{+}^{(x)}+\left(\frac{a-b}{\sqrt{2}}\right) \times{ }_{-}^{(x)}=\binom{a}{b} \\
\begin{array}{c}
a=(1+i) / \sqrt{6} \\
b=2 / \sqrt{6}
\end{array} \\
\left\lvert\, \frac{1}{\sqrt{2}}\binom{1}{1} \quad \frac{1}{\sqrt{2}}\binom{1}{-1}\right. \\
\left|\begin{array}{c}
-\hbar / 2 \\
\sqrt{2}
\end{array}\right|_{\substack{\text { prob. of getting }+\hbar / 2 \\
\text { if } S_{x} \text { is measured }}}^{2}=(1 / 2)|(3+i) / \sqrt{6}|^{2}=5 / 6 \\
\text { Check! }
\end{gathered}
$$

$$
\left|\frac{a-b}{\sqrt{2}}\right|^{2}=\begin{gathered}
\text { prob. of getting }-\hbar / 2 \\
\text { if } S_{x} \text { is measured }
\end{gathered}=(1 / 2)|(-1+i) / \sqrt{6}|^{2}=1 / 6
$$

prob. of getting $+\hbar / 2$ or $-\hbar / 2$ if $S_{x}$ is measured has to be 1 .

Indeed $5 / 6+1 / 6=1$.

What is the "expectation value" of $S_{x}$ ?

$$
\frac{5}{6}\left(+\frac{\hbar}{2}\right)+\frac{1}{6}\left(-\frac{\hbar}{2}\right)=\frac{\hbar}{3}
$$

Alternatively, you get the
$\mathbf{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad$ same $\hbar / 3$ as follows:
$\mathbf{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$\sigma_{x}$ Pauli matrix


Check last step!

$$
\frac{\hbar}{2}\binom{2 / \sqrt{6}}{(1+i) / \sqrt{6}}
$$

$(e, f)\binom{c}{d}=$
$=e . c+f . d$

$$
\left\langle S_{x}\right\rangle=\chi^{\dagger} \mathbf{S}_{x} \chi=\left(\frac{(1-i)}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)\left(\begin{array}{cc}
0 & \hbar / 2 \\
\hbar / 2 & 0
\end{array}\right)\binom{(1+i) / \sqrt{6}}{2 / \sqrt{6}}=\frac{\hbar}{3}
$$

horizontal spinor with each component conjugated
vertical spinor as given; $2 \times 2$ acts over spinor (check!)

