PROBLEM 1: Consider an electron in the Hydrogen atom potential, located in the state with quantum numbers $\mathrm{n}=2, \mathrm{l}=1, \mathrm{~m}=-1$. Using the formula sheet tables, construct the explicit wave function $\Psi_{2,1,-1}(r, \theta, \phi)$.

$$
\begin{aligned}
R_{21} & =\frac{1}{\sqrt{24}} a^{-3 / 2}\left(\frac{r}{a}\right) e^{-r / 2 a} \\
Y_{1}^{-1} & =\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi} \\
\psi_{21-1}(r, \theta, \phi) & =\frac{1}{\sqrt{24}} \sqrt{\frac{3}{8 \pi}} a^{-5 / 2}+e^{-r / 2 a} \sin \theta e^{-i \phi}
\end{aligned}
$$

PROBLEM 2: Consider an electron in the Hydrogen atom potential, located in the state with quantum numbers $n=3, l=0$, $\mathrm{m}=0$.
(a) Using the formula sheet tables, construct the explicit wave function $\Psi_{3,0,0}(r, \theta, \phi)$.
(b) Make a crude sketch by hand, as in the book and as in one of the lectures, of the probability $\left|\Psi_{3,0,0}(r, \theta, \phi)\right|^{2}$, describing the nodes and the angular dependence, if any, in the plane (x, z).
(a) $\quad \psi_{300}=R_{30}(r) y_{0}^{0}(\theta, \phi)$
From table in formula sheet

$$
\begin{array}{r}
R_{30}=\frac{2}{\sqrt{27}} a^{-3 / 2}\left(1-\frac{2}{3} \frac{r}{a}+\frac{2}{2 \lambda}\left(\frac{r}{a}\right)^{2}\right) e^{-r / 3 a} \\
\quad \text { where } a=\text { Bohr radius } \sim 0.5 \AA
\end{array}
$$

$$
y_{0}^{0}=\frac{1}{\sqrt{4 \pi}}
$$

$$
\text { Then: } \psi_{300}(r, \theta, \phi)=\frac{2}{\sqrt{27}} \frac{a^{-3 / 2}}{\sqrt{4 \pi}}\left(1-\frac{2}{3} \frac{r}{a}+\frac{2}{27}\left(\frac{r}{a}\right)^{2}\right) e^{-r / 3 a}
$$

(b) The polynomial is order 2, thus 2 routs.

Because $l=0$, there is a strong spot at $r=0$. The shape

Sketched
No angular dependence
is $|4300|^{2}$. because $y_{0}^{\circ}=\frac{1}{\sqrt{4 \pi}}$

- positive,
O close to 0 .

PROBLEM 3: Consider the follow linear combination of eigenstate: of the hydrogen atom:

$$
\Psi=A\left[2 \Psi_{4,0,0}(r, \theta, \phi)+\mathrm{i} \Psi_{2,1,1}(\mathrm{r}, \theta, \phi\right.
$$

(a) Find A so that Ψ is normalize c to 1. Only use the orthonormalit? property of the eigenstates $\Psi_{n, l, m}(r, \theta, \phi)$, not the explicit stat ϵ from formula sheet.
(b) If the Ψ given above is the ste at time $t=0$, write the state at an arbitrary time t. For the energies simple use the notation E_{n}, not tl explicit values.
This entire problem should be dc in just a few lines. Do not explicit write $\Psi_{4,0,0}(r, \theta, \phi)$ and $\Psi_{2,1,1}(r, \theta, \phi)$ just keep the notation as it is.
(a)

$$
\psi=A\left[2 \psi_{400}+i \psi_{211}\right]
$$

$$
\begin{aligned}
1=|A|^{2} \int|\psi|^{2} d^{3} r=|A|^{2}\left[4 \int|\psi 400|^{2} d^{3} r\right. & +\int\left|\psi_{211}\right|^{2} d^{3} r+ \\
\left(2 \psi_{400}^{*}-i \psi_{211}^{*}\right)\left(2 \psi_{400}+i \psi_{211}\right) & +2 i \int \psi_{400}^{*} \psi_{211} d^{3} r \\
& \left.-2 i \int \psi_{211}^{*} \Psi_{400} d^{3} r\right]= \\
& \text { orthonormlity } \quad|A|^{2}[4+1+2 i .0-2 i .0]=5|A|^{2} \rightarrow A=\frac{1}{\sqrt{5}}
\end{aligned}
$$

(b) $\psi(r, \theta, \phi, t)=\frac{1}{\sqrt{5}}\left[2 \psi_{400}(r, \theta, \phi) e^{-i E_{4} t / \hbar}+i \psi_{211}(r, \theta, \phi) e^{-i E_{2} t / t}\right]$

PROBLEM 4: Calculate the commutator [Lz,y] by the procedure in one of the HW problems and in a lecture ie. using simpler commutators such as $\left[y, p_{y}\right]$.

$$
\begin{aligned}
& {\left[y, L_{z}\right]=\left[y, x p_{y}-y p_{x}\right]=\left[y, x p_{y}\right]-\left[y, y p_{x}\right]=} \\
= & x \underbrace{y, p y}_{i \hbar}]-p_{x} \underbrace{[y, y]}_{=0}=i \hbar x . \text { Thus, }\left[L_{z}, y\right]=-i \hbar x
\end{aligned}
$$

PROBLEM 5: Choose the correct answer. No calculations allowed or needed, but you should provide a simple *brief* reason for your choice.
(i) If we only know that a wave function is zero at the origin of coordinates $r=0$, what can we conclude with certainty about the angular momentum I? Explain.
(a) $l=0 \quad$ or
(b) $I \neq 0 \quad$ or
(c) $I=2$?
(ii) Of the $R_{n 1}$ functions with quantum numbers given below, which one has two nodes located at different values of r ? Use formula sheet.
(a) $(n, I)=(3,2) \quad$ or \quad (b) $(n, I)=(3,0)$ or
(c) $(n, l)=(4,3)$
(iii) If we only know that an eigenstate of the hydrogen Hamiltonian, as those we have studied in Ch. 4 , is independent of the angle ϕ, what can we conclude?
(a) $m=-1$ or
(b) $I=0 \quad$ or
(c) $m=0$
(i) $\quad l=0$ has a wave function not zero at Thus (a) is incorrect.
If $\psi(r=0)$ is zero we only know their $l=2$ is only a special case.
Answer: (b).
(ii) To have 2 nodes at different values of weneet a polynomial of order 2. $(m, e)=(3,2)$ is incorrect, same $(m, l)=(4,3)$.
The only solitrom of those proposed within a polynomial of second order and two di fiferent roots is $(n, l)=(3,0)$.

Answer: (b)
(iii) From the $e^{-i m p}$ portion of wave functor we know that no dependence with of mem $m=0$. Any value of l is allowed, a long as $m=0$. Thus "R=0"cannotke inferred.

Answer: (c)
(iv) Consider a hydrogen atom. Make the list of all possible states with $\mathrm{n}=4$, namely write all the possible quantum numbers ($(, \mathrm{m}$) allowed if $\mathrm{n}=4$.
(v) What is the full degeneracy of the level with quantum number $n=3$?
(iv) For $n=4$, the allowed values of l are $0,1,2,3$

For $l=3, m=-3,-2,-1,0,1,2,3 \quad 7$
For $l=2, m=-2,-1,0,1,2 \quad 5$
For $l=1, m=-1,0,1 \quad 3$
For $l=0, m=\quad \frac{1}{16}=4^{2}=n^{2}$
(v) $n=3$ means $1=2,1,0: \quad 5+3+1=$

9
(vi)

$$
\left\langle L^{2}\right\rangle / \hbar^{2}\left\{\begin{array}{l}
2(2+1)=0 \\
1(1+1)=2 \\
0(0+1)=0
\end{array}\right.
$$

