2s orbital
1 node inside
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Y|

By linear combinations you
recover the canonical 3d
#dals of ‘rex‘rbooks

W=
\o i
w

i H\J. -

LT T

I

«*ipy)
rbital, 1 node

it

oo linear combination

of canonical 3d
orbitals d,, and d,,



And as usual, the wave functions are orthonormal:

f w:,?,-m "wﬂxz_fm-; '1‘2 Sll‘l O dr do d(}{) — ‘Ssz 53‘1"5mm’

(S I
Because of Because of
radial spherical

equation. harmonics.



F.c.c. 1NE QPECLIUM O] Aydroger

n=1, n;=2, absorption

Excited State

ni:2, nle
emission

Emission of photons:

f 1 1
E,=E —E;f=—13.6 ¢V|— — )

G

Ey =hv }u:C/'V.T

L1
A n? -H?

rR=-" ‘3( ¢ ) = 1.097 x 10’ m™!
dwch’ \4ieg

R= Rydberg constant; formula found
before Sch Eq, just empirically.
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Bohr Model for Hydrogen Atom

(measurement in nanometers)

Page 3 of first lecture Aug 2020

Sy l ﬁﬁ}m Prism )
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Nk oo
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Hydrogen Spectrum % 3 & 2
UV = Ultraviolet
IR = Infrared Example:
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|
1282 656 434 122 (97
1875 1094 486 Ao 108
\ Infrared /\ /\ Ultraviolet / X rays yrays ..
Visible;

<- Microwave IR; Paschen, n=3 Balmer, n=2 UV;Lyman, n=1



4.3: Angular Momentum

We wish to find out what is the meaning of /"
and "m" in the quantum numbers (n,/,m).
ik
Let us start with the classical formula for X Y Z
angular momentum: [, —pxp ——— PxPyP,

Component by component in Cartesian coordinates this is:

Lx =yp: —zpy, Ly=zpx—xp;, Ly;= xPy — YPx-

To move into quantum mechanics we follow the usual recipe:

px — —ihd/dx, py — —ihd[dy, p, — —ihd/dz



Do these operators commute? (HW)

[Ly, Lyl = [yp; — 2Py, ZPx — XP:]

= [YPz» 2Px] — [ypz» xp.] — [2py, zPx] + [2Py, XP;]
pr[pZ/z] yx lepz] PyPX[Z,Z] XPY[Z,PZ]
0 -0
= ypx P2y 2] + xpylz, Pl = 1A(xpy — ypx) = iR L
\_'_I \_'_I \ i J
-iR +ih Lz

[Ly, Lyl =ihLy;  [Ly, Ll =ihLyx; [Lg, Lx] = ihLy




If operators do not commute, then we cannot know
them simultaneously, as shown in the general
theorem of Ch. 3. For example:

07.0f, = (ic:m: >) = %‘(Lz}z'

However, something special happens with the square
of the angular momentum:

L2=L2+1% 41?7

I't commutes with L, (and with L, and with L,):
(L%, L] = [L3, Lyl + [L2, L]+ (L2, L)

.. we need a "mini theorem" now ...



L2 L= L2 Ly - L L2

Ly [Ly Lyl = Ly (Lby - LuLy)

L, LI, = (Lle- L) L,

(L2 L=l [LLd+[L,L L, usedin HW

In general [A%, B]= A[A,B]+[A,B] A. You will use this
theorem in HW. Applying this theorem multiple times:

(L2, Ly] = [L2, Lx]+[L},,Lx1+[L L,]

@ ﬂ—f—[%@—%@ x1+[Lz,E

= 0.




The same holds for all components:
L2, L]=0, [I%L,=0, [L%L,]=0
Because L? commutes with at least one component

(usually chosen to be L,) then we should find
eigenstates of both operators simultaneously.

Then our mission is to find A and pand f.

To solve this problem we will use a procedure very
similar to that of the Harmonic Oscillator with the
lowering and raising operators.

10
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