## All together now:

$$
\psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l}^{m}(\theta, \phi)\binom{1}{0}
$$

$$
\downarrow
$$

Replaced by $n / m_{s} s m_{s}=n / m_{1} \frac{1}{2} \frac{1}{2}$
Now we need 5 quantum numbers to represent the state of one electron in a H atom.

Comment: The total magnetic moment arises from the sum as vectors of $L$ and $S$. This will be discussed in P412.

Returning, again!, to the general combination:

$$
\chi=\binom{a}{b}=a \chi_{+}+b \chi_{-}
$$

What is the probability that the spin points say along the positive $x$ axis?

To answer this question, first you have to diagonalize the $2 \times 2$ Pauli matrix " $x$ ". Turns out the "eigenspinors" are:

$$
x_{+}^{(x)}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}},\left(\text { eigenvalue }+\frac{\hbar}{2}\right) ; \quad x_{-}^{(x)}=\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}},\left(\text { eigenvalue }-\frac{\hbar}{2}\right)
$$

The general combination ...

$$
\chi=\binom{a}{b}=a \chi_{+}+b \chi_{-}
$$

... can now be written as:

$$
\chi=\left(\frac{a+b}{\sqrt{2}}\right) \chi_{+}^{(x)}+\left(\frac{a-b}{\sqrt{2}}\right) \chi_{-}^{(x)}
$$

$$
(1 / 2)|a+b|^{2}
$$

is the probability of measuring spin up along $x$.

$$
(1 / 2)|a-b|^{2}
$$

is the probability of measuring spin down along $x$.

Review for Test 3 begins: $\quad \psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l}^{m}(\theta, \phi)$

$$
\begin{aligned}
& R_{10}=2 a^{-3 / 2} \exp (-r / a) \\
& R_{20}=\frac{1}{\sqrt{2}} a^{-3 / 2}\left(1-\frac{1}{2} \frac{r}{a}\right) \exp (-r / 2 a) \\
& R_{21}=\frac{1}{\sqrt{24}} a^{-3 / 2} \frac{r}{a} \exp (-r / 2 a) \\
& R_{30}=\frac{2}{\sqrt[2]{27}} a^{-3 / 2}\left(1-\frac{2}{3} \frac{r}{a}+\frac{2}{27}\left(\frac{r}{a}\right)^{2}\right) \exp (-r / 3 a) \\
& R_{31}=\frac{8}{27 \sqrt{6}} a^{-3 / 2}\left(1-\frac{1}{6} \frac{r}{a}\right)\left(\frac{r}{a}\right) \exp (-r / 3 a) \\
& R_{32}=\frac{4}{81 \sqrt{30}} a^{-3 / 2}\left(\frac{r}{a}\right)^{2} \exp (-r / 3 a) \\
& R_{40}=\frac{1}{4} a^{-3 / 2}\left(1-\frac{3}{4} \frac{r}{a}+\frac{1}{8}\left(\frac{r}{a}\right)^{2}-\frac{1}{192}\left(\frac{r}{a}\right)^{3}\right) \exp (-r / 4 a) \\
& R_{41}=\frac{\sqrt{5}}{16 \sqrt{3}} a^{-3 / 2}\left(1-\frac{1}{4} \frac{r}{a}+\frac{1}{80}\left(\frac{r}{a}\right)^{2}\right) \frac{r}{a} \exp (-r / 4 a a) \\
& R_{42}=\frac{1}{64 \sqrt{5}} a^{-3 / 2}\left(1-\frac{1}{12} \frac{r}{a}\right)\left(\frac{r}{a}\right)^{2} \exp (-r / 4 a) \\
& R_{43}=\frac{1}{768 \sqrt{35}} a^{-3 / 2}\left(\frac{r}{a}\right)^{3} \exp (-r / 4 a)
\end{aligned}
$$

$$
\psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l}^{m} \cdot(\theta, \phi)
$$

$$
\begin{array}{ll}
Y_{0}^{0}=\left(\frac{1}{4 \pi}\right)^{1 / 2} & Y_{2}^{ \pm 2}=\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta e^{ \pm 2 i \phi} \\
Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta & Y_{3}^{0}=\left(\frac{7}{16 \pi}\right)^{1 / 2}\left(5 \cos ^{3} \theta-3 \cos \theta\right) \\
Y_{1}^{ \pm 1}=\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{ \pm i \phi} & Y_{3}^{ \pm 1}=\mp\left(\frac{21}{64 \pi}\right)^{1 / 2} \sin \theta\left(5 \cos ^{2} \theta-1\right) e^{ \pm i \phi} \\
Y_{2}^{0}=\left(\frac{5}{16 \pi}\right)^{1 / 2}\left(3 \cos ^{2} \theta-1\right) & Y_{3}^{ \pm 2}=\left(\frac{105}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \cos \theta e^{ \pm 2 i \phi} \\
Y_{2}^{ \pm 1}=\mp\left(\frac{15}{8 \pi}\right)^{1 / 2} \sin \theta \cos \theta e^{ \pm i \phi} & Y_{3}^{ \pm 3}=\mp\left(\frac{35}{64 \pi}\right)^{1 / 2} \sin ^{3} \theta e^{ \pm 3 i \phi}
\end{array}
$$

Already normalized!

Consider an electron in the Hydrogen atom potential, located in the state with quantum numbers $\mathrm{n}=2, \mathrm{l}=1, \mathrm{~m}=-1$.
(a) Using the tables of $R$ and $Y$ provided, construct the wave function $\Psi_{2,1,-1}(r, \theta, \phi)$.
(b) Find the expectation value $<r>$ in this state.
(a)

$$
\begin{aligned}
& R_{21}=\frac{1}{\sqrt{24}} a^{-3 / 2}\left(\frac{r}{a}\right) e^{-r / 2 a} \quad y_{1}^{-1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi} \\
& \psi_{21-1}(r, \theta, \phi)=\frac{1}{\sqrt{24}} \sqrt{\frac{3}{8 \pi}} a^{-5 / 2}+e^{-r / 2 a} \sin \theta e^{-i \phi}
\end{aligned}
$$

(b)

$$
\langle r\rangle=\frac{\beta^{2}}{24.8 \pi} a^{-5} \int_{0}^{\int_{0}^{\infty}} r^{2} e^{-r / \sigma} r r^{2} d r \underbrace{\int_{0}^{\infty} r^{5} e^{-r / \sigma} d r=5!a^{6}}_{\int_{0}^{\infty}} \sin ^{3} \theta d \theta \underbrace{\int_{0}^{\pi}}_{2 \pi} d \phi=\frac{2 \pi}{64 \not / t} 5!a \frac{4}{3}=5 a
$$

Consider an electron in the Hydrogen atom potential, located in the state $n=2, \mathrm{l}=0, \mathrm{~m}=0$.
(a) Using the formula sheet tables, construct the wave function $\Psi_{2,0,0}(r, \theta, \phi)$.
(b) Make a crude sketch by hand, as in the book and as in one of the lectures, of the probability $\left|\Psi_{2,0,0}(r, \theta, \phi)\right|^{2}$ describing the nodes and the angular dependence in the plane $(x, z)$.
(a)

$$
\psi_{200}=R_{20}(r) Y_{0}^{0}(\theta, \phi)=\frac{1}{\sqrt{2}} a^{-3 / 2}\left(1-\frac{r}{2 a}\right) e^{-r / 2 a} \frac{1}{\sqrt{4 \pi}}
$$

(b)

Becsuse $l=0$, then $\psi_{200}$ st the orin is nonzero.

It only has a node at $r=20$ ana then an exponentise decry. Thus, $|\psi|^{2}$ will have a bright spot centered at $r=0$, a weill region near $r=2 a$, and them ans the soft maximum before dropping exponentially to 0 . No anpulir dependence becruse $l=m=0$.




Calculate the following two commutators, as in a HW problem.
Do not memorize, because my focus will be on the procedure.
(a) $\left[L_{2}, y\right]$
(b) $\left[L_{z}, p_{x}\right]$
(a)

$$
\begin{aligned}
{\left[L_{z}, y\right] } & =\left[x p_{y}-y p_{x}, y\right]=\left[x p_{y}, y\right]-\left[y p_{x}, y\right]= \\
& =x[\underbrace{\left[p_{y}, y\right]}_{-i \hbar}-p_{x} \underbrace{[y, y]}_{=0}=-i \hbar x
\end{aligned}
$$

(b)

$$
\begin{aligned}
{\left[L z, p_{x}\right] } & =\left[x p_{y}-y p_{x}, p_{x}\right]=\left[x p_{y}, p_{x}\right]-\left[y p_{x}, p_{x}\right]= \\
& =p_{y} \underbrace{\left[x, p_{x}\right]}_{i \hbar}-y \underbrace{\left[p_{x}, p_{x}\right]}_{=0}=i \hbar p_{y}
\end{aligned}
$$

Consider a hydrogen atom.
(a) What is the degeneracy of the level with quantum number $n=3$ ? Provide all the quantum numbers of each degenerate level.
(b) What are the possible values of the angular momentum square, in units of $\hbar^{2}$, that you could find as an outcome of an experiment if the electron is in an equal-weight mixture of all levels with $n=3$ ?
(a) If $n=3$, then $l=2,1,0$.

$$
\begin{aligned}
& l=2 \text { has } m=-2,-1,0,+1,+2 \\
& l=1 \text { has } m=-1,0,+1 . \\
& l=0 \text { has } m=0
\end{aligned}
$$

Thus, tote is $5+3+1=9$
Not enough to say $\mathrm{n}^{2}=9$
(b)

$$
\left\langle L^{2}\right\rangle / h^{2}\left\{\begin{array}{l}
2(2+1)=6 \\
1(1+1)=6 \\
0(0+1)=0
\end{array}\right.
$$

Consider the following linear combination of eigenstates of the hydrogen atom:

$$
\Psi=\mathrm{A}\left[\Psi_{3,1,1}(r, \theta, \phi)+i \Psi_{2,0,0}(r, \theta, \phi)\right] . \quad \psi=A\left(\Psi_{311}+i \psi_{200}\right)
$$

(a) Find the value of A so that $\Psi$ is normalized to 1 . Only use the orthonormality property of the eigenstates $\Psi_{n, l m}(r, \theta, \phi)$, not the explicit states.
(b) If $\Psi$ given above is the state at time $t=0$, write the state at an arbitrary time $t$. For the energies simple use the notation $E_{n}$, not the explicit values.

This entire problem should be done in just a few lines. Do NO write explicitly $\Psi_{3,1,1}(r, \theta, \phi)$ and $\Psi_{2,0,0}(r, \theta, \phi)$, just keep the notation as it is.

$$
\text { (a) } \begin{aligned}
& \left(|\psi|^{2} d^{3} r=1=A^{2}\left(\left(\psi_{311}^{*}-i \psi_{200}^{*}\right)\left(\psi_{311}+i \psi_{200}\right) d^{3} r=\right.\right. \\
= & A^{2}[\int_{1}^{\left|\psi_{311}\right|^{2} d^{3} r}+\underbrace{\int\left|\psi_{200}\right|^{2} d^{3} r}_{1}+i \underbrace{\iint_{0}^{\psi_{311}^{*} \psi_{200} d^{3} r}}_{1}-i \underbrace{\iint \psi_{200}^{*} \psi_{311} d^{3} r}_{0}] \\
= & 2 A^{2}, \text { thus } A=1 / \sqrt{2}
\end{aligned}
$$

(b)

