4.2: The Hydrogen Atom

Consider an electron orbiting a proton fixed at the origin of coordinates. The potential is ($\varepsilon_{0}=$ vacuum permittivity):

$$
V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}
$$

The radial equation for " $u(r)$ " (recall $R(r)=u(r) / r$) becomes:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u
$$

The exact solution of the Hydrogen atom potential is important because it influences on the understanding of all atoms.

We will focus on bound states i.e. $\mathrm{E}<0$ (there

 are also scattering states).Thus, the combination used many times becomes:

$$
\begin{aligned}
& \kappa \equiv \frac{\sqrt{-2 m E}}{\hbar} \\
& 1 / \kappa^{2}=-\hbar^{2} / 2 m E
\end{aligned}
$$

If you divide all by E, and move the effective potential to the right, you get:

$$
\frac{1}{\kappa^{2}} \frac{d^{2} u}{d r^{2}}=\left[1-\frac{m e^{2}}{2 \pi \epsilon_{0} \hbar^{2} \kappa} \frac{1}{(\kappa r)}+\frac{l(l+1)}{(\kappa r)^{2}}\right] u
$$

This suggests $\underset{\left(\begin{array}{l}\rho \equiv \kappa r \\ (\text { dimensionless) })\end{array}\right.}{\text { may be useful, }} \begin{gathered}\text { and also }\end{gathered} \rho_{0} \equiv \frac{m e^{2}}{2 \pi \epsilon_{0} \hbar^{2} \kappa}$

The exact radial equation then becomes "simpler":

$$
\frac{d^{2} u}{d \rho^{2}}=\left[1-\frac{\rho_{0}}{\rho}+\frac{l(l+1)}{\rho^{2}}\right] u
$$

As done for the "second" solution of the 1D harmonic oscillator (using the Hermite polynomials), we will study special cases expecting to simplify the problem:
Consider ρ large: $\quad \frac{d^{2} u}{d \rho^{2}}=u \quad \longrightarrow \begin{gathered}u(\rho) \sim A e^{-\rho} \\ \begin{array}{l}\text { Unphysical diverging } \\ \text { solutions discarded. }\end{array}\end{gathered}$
Consider ρ small: $\frac{d^{2} u}{d \rho^{2}}=\frac{l(l+1)}{\rho^{2}} u \longrightarrow u(\rho) \sim C \rho^{l+1}$

Knowing the two asymptotic limits of ρ large and small, it makes sense to try a new definition:

$$
u(\rho)=\rho^{I+1} e^{-\rho} v(\rho) \quad \begin{gathered}
\rho=\kappa r r \text { so we know all solutions } \\
\text { will decay exponentially }
\end{gathered}
$$

$$
\rho \frac{d^{2} v}{d \rho^{2}}+2(l+1-\rho) \frac{d v}{d \rho}+\left[\rho_{0}-2(l+1)\right] v=0
$$

Exactly as done for the Hermite polynomials of 1D oscillator we try a series expansion:

$$
v(\rho)=\sum_{j=0}^{\infty} c_{j} \rho^{j}
$$

$$
\begin{aligned}
& \frac{d v}{d \rho}=\sum_{j=0}^{\infty} i c_{j} \rho^{j-1}=\sum_{j=0}^{\infty}(j+1) c_{j+1} \rho^{i} \\
& \frac{d^{2} v}{d \rho^{2}}=\sum_{j=0}^{\infty} j(j+1) c_{j+1} \rho^{j-1}
\end{aligned}
$$

* Check switch from j to $j+1$ by expanding the first few terms

Introducing this into the diff equation we arrive to a recursive relation for the coefficients Eq.4.63:

$$
c_{j+1}=\left\{\frac{2(j+l+1)-\rho_{0}}{(j+1)(j+2 l+2)}\right\} c_{j}
$$

At very large j, then: $\quad c_{j+1} \cong \frac{2}{j+1} c_{j}$

At large j, it can be shown (book) that the coefficients generate a growing exponential e^{p}. The SAME happened in Ch 2, 1D harmonic oscillator. Then, we must truncate the series (as with the Hermite polynomials). Long story short, there is an upper limit in j beyond which:

$$
c_{(\text {mana }+1)}=0
$$

$$
\mathrm{c}_{0} \text { only then } j_{\max }=0
$$

$$
\mathrm{c}_{0}, \mathrm{c}_{1} \text { only then } j_{\max }=1
$$

$$
\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}, \ldots
$$

Thus, the series expansion with j running in principle to ∞, becomes in practice a polynomial.

You may recall that "magically" from that condition, the quantized levels of the 1D oscillator were deduced. Here is the SAME story.

Repeating the recursive relation from 2 pages back:

$$
c_{j+1}=\left\{\frac{2(j+l+1)-\rho_{0}}{(j+1)(j+2 l+2)}\right\} c_{j}
$$

Then: $\quad 2\left(j_{\max }+l+1\right)-\rho_{0}=0$

Remember

Call this " n " $(1,2,3, \ldots)$. T.e. $\rho_{0}=2 n$. Min angular momentum / is $0 . \operatorname{Min} j_{\text {max }}$ is 0 . You can achieve the same " n " with various $j_{\text {max }}$ and I.

$$
\rho_{0} \equiv \frac{m e^{2}}{2 \pi \epsilon_{0} \hbar^{2} \kappa}
$$

By this procedure we arrive to the very famous Bohr's formula:

$$
E_{n}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}
$$

and

$n=1,2,3, \ldots$

$$
E_{n}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}
$$

Moreover, since $\kappa \equiv \frac{\sqrt{-2 m E}}{\hbar}$ then it can be shown:
$\kappa=\left(\frac{m e^{2}}{4 \pi \epsilon_{0} \hbar^{2}}\right) \frac{1}{n}=\frac{1}{a n}$ where $a=0.529 \times 10^{-10} \mathrm{~m}$
Bohr's radius.

$$
\begin{array}{cl}
u(\rho)=\rho^{l+1} e^{-\rho} v(\rho) & \text { The angstrom scale }, \\
\rho \equiv \kappa r=(1 / \text { an }) r & \text { and thus the typical } \\
\text { atomic size, emerges. }
\end{array}
$$

Angstrom is the "natural" size of atoms. Remarkable!

