How about the ground state wave function?
Remember:

$$
\psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l}^{m}(\theta, \phi)
$$

$$
R_{n l l}(r)=\frac{1}{r} \rho^{l+1} e^{-\rho} v(\rho) \quad u(\rho)=\rho^{l+1} e^{-\rho} v(\rho) \quad \rho \equiv \kappa r
$$

We start with $n=1$, the lowest energy (i.e. the most negative). Since $n=j_{\max }+l+1$, then $l=0, j_{\max }=0$. Then

$$
\psi_{100}(r, \theta, \phi)=R_{10}(r) Y_{0}^{0}(\theta, \phi)
$$

with $R_{10}(r)=\frac{c_{0}}{a} e^{-r / a}$ because the polynomial has only a

$$
Y_{0}^{0}(\theta, \phi)=1 / \sqrt{4 \pi}
$$ constant c_{0}.

We then normalize, which means we fix the value of c_{0} :

$$
\int_{0}^{\infty}\left|R_{10}\right|^{2} r^{2} d r=\frac{\left|c_{0}\right|^{2}}{a^{2}} \int_{0}^{\infty} e^{-2 r / a} r^{2} d r=\left|c_{0}\right|^{\frac{a}{4}} \frac{a}{4}=1
$$

The very final result for the ground state of an electron in a H atom is:

$$
\psi_{100}(r, \theta, \phi)=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}
$$

which, amazingly, is remarkably simple.

Consider now the excited states, starting with $n=2$:

$$
\begin{aligned}
E_{2} & =\frac{-13.6 \mathrm{eV}}{4} \quad \begin{array}{l}
\text { Because } n=j_{\max }+1+1, \text { then } n=2 \text { allows for } \\
l=0, j_{\max }=1 \text { or } \mid=1(m=1,0,-1), j_{\text {max }}=0 \text {. Thus, } \\
\text { degeneracy is } \left.4 \text { (in general, degeneracy is } n^{2}\right) .
\end{array} \\
& =-3.4 \mathrm{eV}
\end{aligned} \begin{aligned}
& \text { This will be the } 2 s \text { and three } 2 p^{\prime} \mathrm{s} \\
& \text { orbitals. }
\end{aligned}
$$

(2) If $l=0, j_{\text {max }}=1$, then $c_{\text {jmax }+1}=c_{2}=0$.

Use $c_{1}=[2(j+1+1-n) /(j+1)(j+21+2)] c_{0}$ with $n=2, j=0$ (because c_{0} means $j=0$) and $l=0$, and you get $c_{1}=-c_{0}$ so the polynomial becomes $v(\rho)=c_{0}(1-\rho)$ with c_{0} again used to normalize.

$$
R_{20}(r)=\frac{c_{0}}{2 a}\left(1-\frac{r}{2 a}\right) e^{-r / 2 a}
$$

$$
Y_{0}^{0}(\theta, \phi)=1 / \sqrt{4 \pi}
$$

(3) If $I=1, j_{\text {max }}=0$, you get $c_{j \max +1}=c_{1}=0$ so the polynomial is only c_{0}, as for the ground state.

Use the general formula $R_{n l}(r)=\frac{1}{r} \rho^{l+1} e^{-\rho} v(\rho)$
with $l=1$ and $n=2$.

$$
R_{21}(r)=\frac{c_{0}}{4 a^{2}} r e^{-r / 2 a}
$$

$$
\rho=(1 / a n) r
$$

$$
\text { with } n=2
$$

The front factor comes from $\rho^{2 / r}=(r / 2 a)^{2} / r$.
The spherical harmonics are: $\begin{aligned} & Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta \\ & Y_{1}^{ \pm 1}=\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{ \pm i \phi}\end{aligned}$

Visually: the familiar levels of the H -atom arise from playing with / and $j_{\max }$

In general, the polynomials $v(\rho)$ are called associated Laguerre polynomials

$$
v(\rho)=L_{n-l-1}^{2 l+1}(2 \rho) \quad \rho=(1 / a n) r
$$

and there are tables with these polynomials.
Putting all together, for arbitrary (n, l, m) the normalized wave functions are:

$$
\frac{\psi_{n l m}=\sqrt{\left(\frac{2}{n a}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!]^{3}}} e^{-r / n a}\left(\frac{2 r}{n a}\right)^{l}\left[L_{n-l-1}^{2 l+i}(2 r / n a)\right] Y_{l}^{m}(\theta, \phi)}{R_{n l}(r)}
$$

$$
\begin{array}{|l|l|}
\hline R_{10}=2 a^{-3 / 2} \exp (-r / a) & \begin{array}{l}
\text { Only } 1=0 \text { are } \\
\text { nonzero at the }
\end{array} \\
\hline R_{20}=\frac{1}{\sqrt{2}} a^{-3 / 2}\left(1-\frac{1}{2} \frac{r}{a}\right) \exp (-r / 2 a) & \begin{array}{l}
\text { center } r=0, \\
\text { as it happened } \\
\text { in the } \\
\text { spherical well. }
\end{array} \\
R_{21}=\frac{1}{\sqrt{24}} a^{-3 / 2} \frac{r}{a} \exp (-r / 2 a) & \\
\hline R_{30}=\frac{2}{\sqrt{27} a^{-3 / 2}\left(1-\frac{2}{3} \frac{r}{a}+\frac{2}{27}\left(\frac{r}{a}\right)^{2}\right) \exp (-r / 3 a)} & \\
R_{31}=\frac{8}{27 \sqrt{6}} a^{-3 / 2}\left(1-\frac{1}{6} \frac{r}{a}\right)\left(\frac{r}{a}\right) \exp (-r / 3 a) & 3 \text { nodes } \\
R_{32}=\frac{4}{81 \sqrt{30}} a^{-3 / 2}\left(\frac{r}{a}\right)^{2} \exp (-r / 3 a) & 2 \text { nodes } \\
R_{40}=\frac{1}{4} a^{-3 / 2}\left(1-\frac{3}{4} \frac{r}{a}+\frac{1}{8}\left(\frac{r}{a}\right)^{2}-\frac{1}{192}\left(\frac{r}{a}\right)^{3}\right) \exp (-r / 4 a) & 1 \text { nodes } \\
R_{41}=\frac{\sqrt{5}}{16 \sqrt{3}} a^{-3 / 2}\left(1-\frac{1}{4} \frac{r}{a}+\frac{1}{80}\left(\frac{r}{a}\right)^{2}\right) \frac{r}{a} \exp (-r / 4 a) & 0 \text { nodes } \\
R_{42}=\frac{1}{64 \sqrt{5}} a^{-3 / 2}\left(1-\frac{1}{12} \frac{r}{a}\right)\left(\frac{r}{a}\right)^{2} \exp (-r / 4 a) & 0 \\
R_{43}=\frac{1}{768 \sqrt{35}} a^{-3 / 2}\left(\frac{r}{a}\right)^{3} \exp (-r / 4 a) & 0
\end{array}
$$

And as usual, the wave functions are orthonormal:

$$
\int \psi_{n l m}^{*} \psi_{n^{\prime} l^{\prime} m^{\prime} r^{2} \sin \theta d r d \theta d \phi=\delta_{n n!} \delta_{l l^{\prime}} \delta_{m m m^{\prime}}} \begin{aligned}
& \text { Because of } \\
& \text { radial } \\
& \text { equation. }
\end{aligned}
$$

