
$R=$ Rydberg constant; this formula was found before Sch. Eq., just empirically.

Emission of photons.

Emission and absorption of photons.
Ionization of H atom requires
13.6 eV or more.

Bohr Model for Hydrogen Atom
(measurement in nanometers)

4.3: Angular Momentum

We wish to find out what is the meaning of " 1 " and " m " in the quantum numbers ($n, 1, m$).

Let us start with the classical formula for angular momentum: $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ \qquad	$\begin{array}{lll} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & \text { y } & z \\ p_{x} & p_{y} & p_{z} \end{array}$

Component by component in Cartesian coordinates this is:

$$
L_{x}=y p_{z}-z p_{y}, \quad L_{y}=z p_{x}-x p_{z}, \quad L_{z}=x p_{y}-y p_{x} .
$$

To move into quantum mechanics we follow the usual recipe:

$$
p_{x} \rightarrow-i \hbar \partial / \partial x, p_{y} \rightarrow-i \hbar \partial / \partial y, p_{z} \rightarrow-i \hbar \partial / \partial z
$$

Do these operators commute? (HW)

$$
\begin{aligned}
& {\left[L_{x}, L_{y}\right] }=\left[y p_{z}-z p_{y}, z p_{x}-x p_{z}\right] \\
&=\underbrace{\left[y p_{z}, z p_{x}\right]}_{y p_{x}\left[p_{z}, z\right]}-\underbrace{\left[y p_{z}, x p_{z}\right]}_{y x\left[p_{z}^{\left[p_{z}, p_{z}\right]}\right.}-\underbrace{\left[z p_{y}, z p_{x}\right]}_{0}+\underbrace{\left[z p_{y}, x p_{z}\right]}_{p_{y} p_{x}[\underbrace{}_{0}]} \\
&=y p_{x}[\underbrace{\left[p_{z}, z\right]}_{-i \hbar}+x p_{y}[\underbrace{}_{y}] \\
& {[\underbrace{\left.z, p_{z}\right]}_{+i \hbar}=i \hbar(\underbrace{\left.x p_{y}-y p_{x}\right)}_{L_{z}}=i \hbar L_{z}} \\
& {\left[L_{x}, L_{y}\right]=i \hbar L_{z} ; \quad\left[L_{y}, L_{z}\right]=i \hbar L_{x} ; \quad\left[L_{z}, L_{x}\right]=i \hbar L_{y} }
\end{aligned}
$$

If operators do not commute, then we cannot know them simultaneously, as shown in the general theorem of Ch . 3. For example:

$$
\sigma_{L_{x}}^{2} \sigma_{L_{y}}^{2} \geq\left(\frac{1}{2 i}\left\langle i \hbar L_{z}\right\rangle\right)^{2}=\frac{\hbar^{2}}{4}\left\langle L_{z}\right\rangle^{2}
$$

However, something special happens with the square of the angular momentum:

$$
L^{2} \equiv L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
$$

It commutes with L_{x} (and with L_{y} and with L_{z}):

$$
\left[L^{2}, L_{x}\right]=\left[L_{x}^{2}, L_{x}\right]+\left[L_{y}^{2}, L_{x}\right]+\left[L_{z}^{2}, L_{x}\right]
$$

... we need a "mini theorem" now ...

$$
\begin{aligned}
& {\left[L_{y}{ }^{2}, L_{x}\right]=L_{y}{ }^{2} L_{x}-L_{x} L_{y}^{2}} \\
& L_{y}\left[L_{y}, L_{x}\right]=L_{y}\left(L_{y} L_{x}-L_{x} L_{y}\right) \\
& {\left[L_{y}, L_{x}\right] L_{y}=\left(L_{y} L_{x}-L_{x} L_{y}\right) L_{y}} \\
& \text { Then, }\left[L_{y}{ }^{2}, L_{x}\right]=L_{y}\left[L_{y}, L_{x}\right]+\left[L_{y}, L_{x}\right] L_{y} \text { to be used in HW HW }
\end{aligned}
$$

In general $\left[A^{2}, B\right]=A[A, B]+[A, B] A$. You will use this theorem in HW. Applying this theorem multiple times:

$$
\begin{aligned}
& \left.\left[L^{2}, L_{x}\right]=\left[L_{x}^{2}, L_{x}\right]+L_{y}^{2}, L_{x}\right]+\underbrace{\left[L_{z}^{2}, L_{x}\right]}_{z} \\
& \left.=L_{y}\left[L_{y}, L_{x}\right]+\left[L_{y}, L_{x}\right] L_{y}\right)+L_{z}\left[L_{z}, L_{x}\right]+\left[L_{z}, L_{x}\right] L_{z} \\
& =L_{y}\left(-i \hbar L_{z}\right)+\left(-i \hbar L_{z}\right) L_{y}+L_{z}\left(i \hbar L_{y}\right)+\left(i \hbar L_{y}\right) L_{z} \\
& =0
\end{aligned}
$$

The same holds for all components:

$$
\left[L^{2}, L_{x}\right]=0, \quad\left[L^{2}, L_{y}\right]=0, \quad\left[L^{2}, L_{z}\right]=0
$$

Because L^{2} commutes with at least one component (usually chosen to be L_{z}) then we should find eigenstates of both operators simultaneously.

$$
L^{2} f=\lambda f \quad L_{z} f=\mu f
$$

Then our mission is to find λ and μ and f.
To solve this problem we will use a procedure very similar to that of the Harmonic Oscillator with the lowering and raising operators.

