In Ch. 2 we defined the raising and lowering operators.

$$
a_{ \pm} \equiv \frac{1}{\sqrt{2 \hbar m \omega}}(\mp i p+m \omega x)
$$

$$
L_{ \pm} \equiv L_{x} \pm i L_{y}
$$

If f is eigenfunction of L^{2} and L_{z} with eigenvalues λ and μ, respectively, then the claim (proof on page 158 , similar as in Ch2) is that:
$L^{2}\left(L_{ \pm} f\right)=\lambda\left(L_{ \pm} f\right)$
$L_{z}\left(L_{ \pm} f\right)=(\mu \pm \hbar)\left(L_{ \pm} f\right)$
L_{+}is the raising operator and L_{-}the lowering operator.

But like in Ch. 2 this cannot go on forever.
Eventually the projection, positive or negative, will be larger than the vector itself.

At the top value, let us call the L_{z} max eigenvalue $\hbar l$

$$
L_{z} f_{t}=\hbar l f_{t} ; \quad L^{2} f_{t}=\lambda \dot{f_{t}}
$$

Useful identity:

$$
\begin{aligned}
& L_{ \pm} L_{\mp}=\left(L_{x} \pm i L_{y}\right)\left(L_{x} \mp i L_{y}\right)=L_{x}^{2}+L_{y}^{2} \mp i\left(L_{x} L_{y}-L_{y} L_{x}\right) \\
&= L^{2}-L_{z}^{2} \mp i\left(i \hbar L_{z}\right) \quad \text { Or, just reorganizing: } \\
& L^{2}=L_{ \pm} L_{\mp}+L_{z}^{2} \mp \hbar L_{z} \\
& \begin{array}{l}
\text { Two identities: } \\
\text { use one. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
L^{2} f_{t} & =\left(L_{-} L_{+}+L_{z}^{2}+\hbar L_{z}\right) f_{t}= \\
& =\left(0+\hbar^{2} l^{2}+\hbar^{2} l\right) f_{t}=\hbar^{2} l(l+1) f_{t}
\end{aligned}
$$

$$
\lambda=\hbar^{2} l(l+1)
$$

Too tedious to continue with all the details but you have the essence of the reasoning already. See page 160.

$$
L^{2} f_{l}^{m}=\hbar^{2} l(l+1) f_{l}^{m} ; \quad L_{z} f_{l}^{m}=\hbar m f_{l}^{m}
$$

Analyzing now the bottom of the chain of states it can be shown that:
$m=-l,-l+1, \ldots, l-1, l$
thus

$$
l=0,1 / 2,1,3 / 2, \ldots
$$

Note that I can be integer or half-integer mathematically speaking. For instance, $1=3 / 2$, can have $m=3 / 2,1 / 2,-1 / 2,-3 / 2$. All math satisfied! \rightarrow Hint: spin!

In the previous page we found the meaning of " 1 " and " m " in the quantum numbers ($n, 1, m$).

The eigenvalues of the L^{2} operator were $\hbar^{2}(1+1)$ and those of the L_{z} operator were $\hbar m$.

Now we need the eigenfunctions ... (more difficult)

Remember that $\mathbf{r}=r \hat{r}$. Then:

$$
\mathbf{L}=\frac{\hbar}{i}[\underbrace{r(\hat{r} \times \hat{r})}_{=0} \frac{\partial}{\partial \dot{r}}+\underbrace{(\hat{r} \times \hat{\theta})}_{=\hat{\phi}} \frac{\partial}{\partial \theta}+\underbrace{(\hat{r} \times \hat{\phi})}_{=-\hat{\theta}} \frac{1}{\operatorname{rin} \theta} \frac{\partial}{\partial \phi}]
$$

We arrive to $\mathbf{L}=\frac{\hbar}{i}\left(\hat{\phi} \frac{\partial}{\partial \theta}-\hat{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi}\right)$

We can now rewrite in terms of the unit vectors in Cartesian coordinates using:

$$
\begin{aligned}
& \hat{\theta}=(\cos \theta \cos \phi) \hat{l}+(\cos \theta \sin \phi) \hat{\jmath}-(\sin \theta) \hat{k} \\
& \hat{\phi}=-(\sin \phi) \hat{\imath}+(\cos \phi) \hat{\jmath},
\end{aligned}
$$

By mere replacement (easy) we arrive to:

$$
\begin{aligned}
& L_{x}=\frac{\hbar}{i}\left(-\sin \phi \frac{\partial}{\partial \theta}-\cos \phi \cot \theta \frac{\partial}{\partial \phi}\right) \\
& L_{y}=\frac{\hbar}{i}\left(+\cos \phi \frac{\partial}{\partial \theta}-\sin \phi \cot \theta \frac{\partial}{\partial \phi}\right)
\end{aligned}
$$

$$
L_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \phi}
$$

Why do we care so much about x, y, z components instead of θ, ϕ, r components? Because we have all commutators etc etc written in terms of x, y, z components from previous pages ...

The very important raising and lowering operators then become (again, easy):

$$
L_{ \pm}=L_{x} \pm i L_{y}= \pm \hbar e^{ \pm i \phi}\left(\frac{\partial}{\partial \theta} \pm i \cot \theta \frac{\partial}{\partial \phi}\right)
$$

Using a relation (easy) derived some pages back:

$$
L^{2}=L_{ \pm} L_{\mp}+L_{z}^{2} \mp \hbar L_{z}
$$

we can deduce an expression (not as easy) for L^{2} in spherical coordinates:

$$
L^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]
$$

So we finally arrived to the differential equation we wish to solve to find the eigenfunctions:

$$
L_{L^{2} \text { from previous page } f_{l}^{m}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] f_{l}^{m}=\hbar^{2} l(l+1) f_{l}^{m}}^{\text {from some pages back }}
$$

HOWEVER, this equation happens to be the SAME "angular equation" that we derived at the start of Chapter 4 when we were trying "separation of variables" to solve the Sch. Eq. (see Eq.[4.17] book):

The "angular equation" was (a mere division by $-У \hbar^{2}$ left and right is the only difference):

$$
\frac{1}{Y}\left\{\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right\}=-l(l+1)
$$

We showed early in the chapter that the solutions were the Spherical Harmonics, so there is no further work to do!

Same for the other (much easier) equation (left as exercise):

$$
L_{z} f_{l}^{m}=\frac{\hbar}{i} \frac{\partial}{\partial \dot{\phi}} f_{l}^{m}=\hbar m f_{l}^{m}
$$

In summary: the Spherical Harmonics, that we studied in detail before, are the eigenfunctions of the L^{2} and L_{z} operators.

The eigenfunctions of the Hamiltonian of the Hydrogen atom

$$
H \psi=E \psi, \quad L^{2} \psi=\hbar^{2} l(l+1) \psi, \quad L_{z} \psi=\hbar \ddot{m} \psi
$$

were already eigenfunctions of L^{2} and L_{z}
Warning: we know spherical harmonics works well for integer I. For half-integer I, the story will be very different ...

This completes the logic: the "l" and " m " quantum numbers introduced mathematically during the separation of variables procedure have a profound physical meaning related to rotations and angular momentum.

The eigenvalues of L^{2} are $\hbar^{2} l(1+1)$ and those of L_{z} are $\hbar m$.

Note that there is a $l(\mid+1)$ not a l^{2}. At large " l " the difference is small but $a t$, say, $l=1$ it is not small.

