4.4: Spin of electrons

A classical rigid body, as a planet, has two kinds of
angular momenta: (1) L, the orbital one associated
with the center of mass, as Earth around the sun, and
(2) S, the spin, as Earth rotating daily about an axis.

In quantum mechanics we already discussed the orbital
component L (related with the electron around the nucleus).

In QM, we also have a spin S for the electron but ... the
electron to the best of our accuracy is a POINT, thus

should not rotate ... in principle.



Spin Magnetic Dipole Moment
Just as electrons have the intrinsic properties of mass and charge, they have an intrinsic
property called spin. This means that electrons, by their very nature, possess these three
attributes. You're already comfortable with the notions of charge and mass. To
understand spin it will be helpful to think of an electron as a rotating sphere or planet.

However, this is no more than a helpful visual tool.

Imagine an electron as a soccer ball smeared with negative charge rotating about an axis.
By the right hand rule, the angular momentum of the ball due to its rotation points down.
But since its charge is negative, the spinning ball is like a little current loop flowing in
the direction opposite its rotation, and the ball becomes an electromagnet with the N

pole up. For an electron we would say its spin magnetic dipole moment vector, .,
points up. Because of its spin, an electron is like a little bar magnet.
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How do you know the electron has a spin? The same as
for any magnetic moment, such as the orbital */". You
introduce the particle in a magnetic field and use the
formula E = -pu.B (note p and S are opposite for an e”)

In the 1921 Stern-Gerlach experiment a beam of

electrons was used (actually a beam of silver atoms which
according to the electron counting should have le- in the outer bs

=0 level).

Spin up

Spin down




However, once we
measure the location and

ﬂf\N\: 4 «'\IW\/W find the particle at

M

In the wave packets
shown, the "finite size"
due to o, is the finite
size of the probability
wave function, not the
particle itself.
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position x,, then that
"sigma” width is gone.

The particle is exactly at
Xo. At that moment, what
radius it has?

Electron radius is smaller than
10-8 to0 10-** m according to
experiments. Radius of nucleus is
10- 1> m. Radius of atom is 10-10m



Thus, it is a fact of Nature, that point elementary particles,
such as an electron, carry an intrinsic spin angular momentum S.

Because the electron is a point, we cannot use the
classical formula 8§ = [, i.e. no moment of inertia.

To describe the intrinsic spin, the math leads. It has to be
“analogous” to that of L. Let us start with the commutators:

becomes the new set ...

[Sx, Syl =ihS;, [Sy, 81 =ihSy, [Sg, Sx] =ihS,




The eigenfunctions are more "abstract” ...

First, let us switch to the Ch. 3 notation using an
abstract Hilbert space notation "|o>" for states:

L2f" = R+ DAY Lofi" = hmf"

becomes

L2 |Im/>: h2 /(/"'1) |Im/>; Lz I/m/>: h m/IIm/>

For L2 and L, using Y;" (0, ¢) or |/ m;>is the SAME.

But for the intrinsic spin, the Ch. 3

notation is the ONLY way.



Because in a previous lecture we arrived all the way to
the eigenvalues by only using the commutators, then
we simply repeat the operation line by line and find:

S2|sm,>=Hh2s(s+l) |sm,>; S, |smo>=hm,|sm,>

I |
S= 0, §3 1, . v ; ms-—_ _S-.1 __S —|_ ]-) AL I | S - 1,‘ S

N | W

The spin of each type of particle is FIXED, not like
the orbital angular momentum in H atom that you can
change by emission or absorption of energy.

The projection of the spin of an electron can be
changed, for instance by a flipping magnetic field, but
the magnitude is infrinsic and fixed.



4.4.1: Spin % (electrons, quarks)

Use S? |sm,>=h2s(s+l)|sm,>; S,|sm,>=hm, |sm, >

Specialize for s=1/2. Then, there are only two states,
which in abstract form are:

| 2 2z>and | 2 -2>
We call them spin "up”, or T, and spin "down", or | .

There is another, still abstract, way to represent
spins up and down. It is using so-called "spinors”

) ()



We can combine the "up” and "down" linearly at will.
So the spin could point "sideways” for instance.

X = (‘;) =ax+ +bx-

If we use spinors for the states, then what do we use
for the operators such as L? ? Certainly we cannot
use derivatives of angles as for spherical harmonics.

From the two equations ...
S|4 dr=Ri(eD)| 4 4>

S| t-fr=RE(R+1)] £-3>

same



.. it can be deduced (see book, easy) that:

5 3.,5(1 0
2 _ T2

From the other two equations ...

S;lz 2»=zhlz »
S;lz-=-2h|z-»

R (1 0
sz=5(0 _1)
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Using the S, and S_ operators [defined as S = & (8 Cl))

and s = & ((1) 8) ] it can be shown (book, page 168):

k0 1 . Af0 =i
sc=3(1 o) s=3( 7)

Dropping the fi/2 factor defines
the famous Pauli matrices:

{0 1 {0 —i /1 0
=1 o) =i o) *==\o -1
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Returning to the general combination:

X = (g) —ax+ +bx-

It has to be normalized like any other state i.e.
jal* + b* =1

a® s the probability of measuring spin up.

|b|*> is the probability of measuring spin down.
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