Consider now scattering states with 50 (page 66). If x
nonzero, then the Sch. Eq. is the same as for free particles.

dzw . _21"HE]J] - _kzljf ¢ = /2”25

dx? #2 — = -
Y (x) = Ae™ + Be™™  x<0 "] Continuity at x=0:
-(‘b-(x) — Fefkl‘ _I_ Ge—ff(x x>o B F + G — A 1L B

—

_ ikx —ikx Remember here
dyr/dx =ik (Fe Ge™"™) x0 — the derivative is

dy/dx =ik (Aeda - Be—’k'l) x<QJ  discontinuous at
x=0 because of
the exotic
nhature of V(x).
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From the same 2 /g J
bound state —;m (dlf — % ) -ay(0) =0
analysis done . e —¢/, —
before we find: ik(F-G—A+B) A+B
, 2ina
ik(F—-G—A B)=—’_., (A + B)
2

Four unknowns and two equations (framed in red).
Something missing ...

These are not normalizable states so "strange” behavior
is expected. We need to think "physically” what we are
doing in terms of a real scattering experiment.



Real scattering experiment:

A
Source = Ag'kx Fe'k —> Detector
will measure
wDiITTnfg;gzre € Lo N transmitted e-
reflected e- X
— The potential at x=0 is a
source of scattering, and
Example of how it works: reflected waves.
F+8=A+8B
Divide by A both egs:
F/A =1+ B/A

Now only two unknowns!



2
ik(F—% — A+ B) = — :ZQ(A+B)
3

Divide by A and again only B/A and F/A are unknowns.

: mo
Introducing B = ——. it can be shown that:
hi<k
iB I
B = A, F = A
1 —1if 1 —iB
Because probabilities |B|* |F|?
are related to |y R = A2 I= e

what matters are:
They should satisfy: R+T =1



Summary scattering experiment (any E>O):

A
Incident wave Ae'** Fe'**  Transmitted
Reflected wave Py wave
X
5 potential
o _1BE B e
AR, 1+ 82 AR 14 B2
/y//ll ) I
1 + QK2 E /ma?) 1+ (ma2/2R%E)
5 potential

R+T=1V



Two interesting comments:

(1) We used not normalizable UWU

solutions, but we meant to use
wave packets:

(2) For the scattering problem
the sign of a does not matter !l
Repulsive or attractive is the
same for scattering [but not for
bound state which only occurs
for -8(x)].

— A

<Y

Yy %

-8(x)



2.6 The finite square well

V) Vo for —a<x<a,

Vi) = { 0, for | x| > a,

We anticipate it will
have both bound and
scattering states.

PROCEDURE: There are three regions. Crucially, T
can solve the equation in each! Thus, we will propose
a general solution in each, and then match v and
dy/dx at the two boundaries.

Let us start with bound states i.e. E<O.



Left region x<-a and Right region x>a:

h% d*yr A  J/—2mE

_ — F _ 2 _
2m dx? v > dx2 Ky K h

—

N RLKX ) ,
Y(x)=Be ", forx <-—a. __ The "other" exponential

—KX diverges in each case.
v(x)=Fe . forx>a. _

Middle region -a<x<a. Here E>-V,,

K d%y d*y

9
om dx? Yoy = Ey > dx? —Y

V2m(E + V)
= p >0

/



In middle region, the general solution is:

I cannot drop any
term a priori.

¥ (x) = Csin(/x) + D cos(/x) :|—

Note: I could have proposed a sum of e
and e * with two unknowns as well.

Five unknowns A,C,D,F (plus E) but T have five egs: match
of v and dy/dx at x=a and x=-a, and normalization.

Moreover, the solutions must be even or odd under
X 2 -X. I can study each sector separately.



We will do the even sector (the odd sector will be in HW).
Only F and D are unknowns.

.. even
Fe ™} for x > a.

Y(x) = Dcos(lx). for-a< x < a,
W (—x). for x < -a

Continuity of v at x=a: Fe ™% = Dcos(la)

Continuity of dy/dx at x=a: —xFe ™9 = —Dsin(la)

From ratio we get | k = /tan(/a)|where

_ V-2mE | = v2m(E + V)

K
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This equation cannot be solved exactly. Must be done
numerically. In general this is the most common situation.

Also in general there is no need to use all the numerical
values of masses, Planck constant, etc. Use clever variables.

Left as exercise

(
z=la zp= ?\/Zm Vo > «ka= \/3% —z?
1

Dimensionless combo
We trade E as

- tan 7 = \/(Z()/Z)‘?' -1 unknown to z
I |

| | | as unknown.

V(z/2)%-1

20:8

/ 3 solutions
Zg
Do
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