Consider now scattering states with E>0 (page 66). If x nonzero, then the Sch. Eq. is the same as for free particles.

$$
\left.\begin{array}{c}
\frac{d^{2} \psi}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi=-k^{2} \psi \quad k \equiv \frac{\sqrt{2 m E}}{\hbar} \\
\psi(x)=A e^{i k x}+B e^{-i k x} \quad x<0 \\
\psi(x)=F e^{i k x}+G e^{-i k x} \quad \quad x>0
\end{array}\right] \begin{aligned}
& \text { Continuity at } x=0: \\
& d \psi / d x=i k\left(F e^{i k x}-G e^{-i k x}\right) \quad x>00=A+B \\
& \left.d \psi / d x=i k\left(A e^{i k x}-B e^{-i k x}\right) \quad x<0\right] \begin{array}{l}
\text { Remember here } \\
\text { the derivative is } \\
\text { discontinuous at } \\
x=0 \text { because of } \\
\text { the exotic } \\
\text { nature of } V(x) .
\end{array}
\end{aligned}
$$

From the same bound state analysis done before we find:

$$
-\frac{\hbar^{2}}{2 m} \underbrace{\left(\left.\frac{d \psi}{d x}\right|_{+\epsilon}-\left.\frac{d \psi}{d x}\right|_{-\epsilon}\right)}_{i k(F-G-A+B)}-\alpha \underbrace{\psi(0)}_{A+B}=0
$$

$$
i k(F-G-A+B)=-\frac{2 m \alpha}{\hbar^{2}}(A+B)
$$

Four unknowns and two equations. Something missing
These are not normalizable states so "strange" behavior is expected. We need to think "physically" what we are doing in terms of a real scattering experiment.

Real scattering experiment:

Divide by A both eqs:

$$
F / A=1+B / A
$$

Now only two unknowns!

$$
i k(F--A+B)=-\frac{2 m \alpha}{\hbar^{2}}(A+B)
$$

Divide by A and again only B / A and F / A are unknowns.

$$
\text { Introducing } \beta \equiv \frac{m \alpha}{\hbar^{2} k} \text { it can be shown that: }
$$

$$
B=\frac{i \beta}{1-i \beta} A, \quad F=\frac{1}{1-i \beta} A
$$

Because probabilities are related to $|\psi|^{2}$ what matters are:

$$
R \equiv \frac{|B|^{2}}{|A|^{2}} \quad T \equiv \frac{|F|^{2}}{|A|^{2}}
$$

They should satisfy: $\quad R+T=1$

Summary scattering experiment (any E>O):

$$
i k(F--A+B)=-\frac{2 m \alpha}{\hbar^{2}}(A+B)
$$

Divide by A and again only B / A and F / A are unknowns.

$$
\text { Introducing } \beta \equiv \frac{m \alpha}{\hbar^{2} k} \text { it can be shown that: }
$$

$$
B=\frac{i \beta}{1-i \beta} A, \quad F=\frac{1}{1-i \beta} A
$$

Because probabilities are related to $|\psi|^{2}$ what matters are:

$$
R \equiv \frac{|B|^{2}}{|A|^{2}} \quad T \equiv \frac{|F|^{2}}{|A|^{2}}
$$

They should satisfy: $\quad R+T=1$

Two interesting comments:

(1) We used not normalizable solutions, but we meant to use wave packets:

(2) For the scattering problem the sign of α does not matter! Repulsive or attractive is the same for scattering [but not for bound state which only occurs for $-\delta(x)$].

2.6 The finite square well

PROCEDURE: There are three regions (piecewise-defined function). We will propose a general solution in each, and then match ψ and $\mathrm{d} \psi / \mathrm{d} x$ at the two boundaries. No weird "tricks" needed for $\mathrm{d} \psi / \mathrm{dx}$, as in delta function.

Let us start with bound states i.e. E<0.

Left region $x<-a$ and Right region $x>a$:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \rightarrow \frac{d^{2} \psi}{d x^{2}}=\kappa^{2} \psi \quad \kappa \equiv \frac{\sqrt{-2 m E}}{\hbar}
$$

$$
\begin{array}{lc}
\psi(x)=B e^{k x}, & \text { for } x<-a . \\
\psi(x)=F e^{-k x}, & \text { for } x>a .
\end{array} \quad \begin{aligned}
& \text { The "other" exponential } \\
& \text { diverges in each case. } \\
& \text { Exactly the same as with } \\
& \text { delta function. }
\end{aligned}
$$

Middle region $-a<x<a$. Here $E>-V_{0}$ (like say $-5>-7$)

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}-V_{0} \psi=E \psi & \rightarrow \frac{d^{2} \psi}{d x^{2}}=-l^{2} \psi \\
& l \equiv \frac{\sqrt{2 m\left(E+V_{0}\right)}}{\hbar}>0
\end{aligned}
$$

