## SOME MOVIES SHOWN TO STUDENTS ...

Movie 1: probability shown, intermediate weird state with oscillations, plotting prob and potential together is a bit confusing, not same units.
http://sces.phys.utk.edu/~dagotto/QuantumMechanics/Animation/movie_1.mp4
From original web site: "FDTD simulation of a Gaussian wave packet with kinetic energy of 500 eV . The potential barrier has a height of 600 eV , and a thickness of 25 pm. The wave packet partially tunnels through the barrier, giving a total probability of about $17 \%$ of finding the particle on the other side."

Movie 2: Re and Im out of phase causing smooth probability, until collision occurs. Note vgroup and vphase are different.

## http://sces.phys.utk.edu/~dagotto/QuantumMechanics/Animation/movie_2.mp4

From original web site: "FDTD simulation of a Gaussian wave packet with kinetic energy of 500 eV . The potential barrier has a height of 600 eV , and a thickness of 25 pm . The black line represents the real part of the wave function, while the red line represents the imaginary part. The actual probability amplitude is found by taking the magnitude-square of the total wave function. The wave packet partially tunnels through the barrier, giving a total probability of about $17 \%$ of finding the particle on the other side. This simulation was written and rendered in Matlab".

Movie 3: well and barrier of same depth/height behave similar for scattering state (not for bound states of course).
http://sces.phys.utk.edu/~dagotto/QuantumMechanics/Animation/movie_3.mp4
Movie 4: Besides middle obstacle, walls far right and left added creating a huge box that can reflect. Wave packet widths grows, eventually particle spreads uniformly. http://sces.phys.utk.edu/~dagotto/QuantumMechanics/Animation/movie 4.mp4

Movie 5: Case where wave packet width is smaller than obstacle, then wave packet can collide twice within the same obstacle! And actually many times.
http://sces.phys.utk.edu/~dagotto/QuantumMechanics/Animation/movie 5.mp4
Movie 6: 2D collision. Now some aspects seem like tunneling and other aspects seem like classical scattering at an angle.
http://sces.phys.utk.edu/~dagotto/QuantumMechanics/Animation/movie_6.mp4

## Chapter 3: Formalism

Consider a 3D vector using real numbers:

$$
\mathbf{a}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

The "dot product" is defined as:

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& \mathbf{a}={ }_{n=1} a_{n} \boldsymbol{e}_{n}
\end{aligned}
$$

It is not difficult to imagine a generalization to $N$ dimensions

$$
|\alpha\rangle \rightarrow \mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right) \quad \mathbf{a}={ }_{n=1}^{N}{ }_{n}^{c_{n}} e_{n}
$$ and to complex numbers:

$$
\langle\alpha \mid \beta\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+\cdots+a_{N}^{*} b_{N}
$$

Linear transformations, represented by matrices, act on vectors. For instance, a rotation.

$$
|\beta\rangle=T|\alpha\rangle \rightarrow \mathbf{b}=\mathbf{T a}=\left(\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 N} \\
t_{21} & t_{22} & \cdots & t_{2 N} \\
\vdots & \vdots & & \vdots \\
t_{N 1} & t_{N 2} & \cdots & t_{N N}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right) \begin{aligned}
& \text { Like an } \\
& \text { "operator" } \\
& \text { acting on a } \\
& \text { vector a }
\end{aligned}
$$

In Quantum Mechanics, wave functions, expressed as a sum over stationary states, $\Psi(x)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x)$ are like an $N \rightarrow \infty$ dimensional vector

Of the set of possible functions, the subset $\begin{array}{ll}\text { Similar to } & \text { Similar to un } \\ \text { a vector a } & \text { vectors } e_{n}\end{array}$ that can be normalized ("square-integrable functions") is called a Hilbert space.

## From many lectures back...

Cartesian $c_{3}$
axes
$r=c_{n=1}^{3} c_{n} e_{n}$
Unit vectors $e_{1}, e_{2}, e_{3}$.
Any vector can be expanded in the orthonormal basis $e_{1}, e_{2}, e_{3}$.


Any wave function can be expanded in the orthonormal basis $\psi_{n}$

All these properties are not pathological of the square well or the harmonic oscillator or the delta potential but generic: all have Hilbert Spaces.

For example, in the infinite square well of width "a" the set of functions that are normalizable i.e.

$$
\int_{0}^{a}|f(x)|^{2} d x<\infty, \quad \text {, and that are zero outside }[0, a]
$$

define the "Hilbert space of the infinite square well".
In general, in the $[a, b]$ interval (which could be $[-\infty,+\infty]$ ):

$$
\int_{a}^{b}|f(x)|^{2} d x<\infty
$$

If this condition is satisfied, we say the function is "square integrable"

$$
\langle f \mid g\rangle \equiv \int_{a}^{b} f(x)^{*} g(x) d x
$$

This is the "inner product" of $f(x)$ with $g(x)$ (analogous of the dot product for complex numbers in 3D)

