Properties of inner products:
$\langle f \mid g\rangle^{*}=\left[\int_{a}^{b} f(x)^{*} g(x) d x\right]^{*}=\int_{a}^{b} g(x)^{*} f(x) d x=\langle g \mid f\rangle$
Then:

$$
\langle g \mid f\rangle=\langle f \mid g\rangle^{*}
$$

Professor's suggestion: If in doubt, work with the explicit integrals as definition of inner product, instead of the <......$>$ notation,

In particular: $\langle f \mid f\rangle=\int_{a}^{b}|f(x)|^{2} d x$
This is real and non negative, justifying the conjugation in $f(x)$ in the definition of $\langle f \mid g\rangle$. $\langle f \mid f\rangle=1$ means $f(x)$ is normalized to 1 .

In this notation, then "orthonormality" of functions is written as:

$$
\left\langle f_{m} \mid f_{n}\right\rangle=\delta_{m n}
$$

"Completeness": any function in the Hilbert space of the problem can be written as

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} c_{n} f_{n}(x) \\
|f\rangle & =\sum_{n} c_{n}\left|f_{n}\right\rangle \\
\left\langle f_{m} \mid f\right\rangle & =\sum_{n} c_{n}\langle\underbrace{\delta_{m}}_{\delta_{m n}\left|f_{n}\right\rangle}
\end{aligned}
$$

Then, the coefficients are $c_{n}=\left\langle f_{n} \mid, f\right\rangle$ which is what we knew already from Ch. 2 i.e.

$$
c_{n} \equiv \int_{a}^{b} f_{n}(x)^{*} f(x) d x
$$

3.2 Observables and Hermitian Operators

Expectation values of operators, such as $\langle\hat{x}\rangle$, $\langle\hat{p}\rangle,\langle\hat{H}\rangle, \ldots$ can be expressed in general as:

$$
\langle\hat{Q}\rangle=\int \Psi^{*} \hat{Q} \Psi d x=\langle\Psi \mid \hat{Q} \Psi\rangle=\langle\Psi| \hat{Q}|\Psi\rangle
$$

where \hat{Q} is the $\hat{x}, \hat{p}, \hat{H}, \ldots$ operator.
But if \hat{Q} is related with a measurement, physically we expect to obtain real numbers. Thus, for the operators of relevance we expect:

$$
\langle\hat{Q}\rangle=\langle\hat{Q}\rangle^{*}
$$

$$
\begin{aligned}
& \text { Because }\langle\hat{Q}\rangle=\langle\hat{Q}\rangle^{*} \text { means <- from physics } \\
& \qquad \begin{aligned}
&\langle\Psi \mid \hat{Q} \Psi\rangle=\langle\Psi \mid \hat{Q} \Psi\rangle^{*} \\
& \text { and because }\langle f \mid g\rangle^{*}=\langle g \mid f\rangle \text {-from math } \\
&(g=\hat{Q} \Psi, f=\Psi)
\end{aligned}
\end{aligned}
$$

$$
\text { then }\langle\Psi \mid \hat{Q} \Psi\rangle=\langle\hat{Q} \Psi \mid \Psi\rangle
$$

Operators \hat{Q} that satisfy this framed property are called Hermitian operators.

Thus, observables are represented by Hermitian operators.

Easy example: coordinate \hat{x} operator

Thus, \hat{x} is Hermitian
$(\hat{x})^{2}$ is also Hermitian, and in general all potentials $V(\hat{x})$, like harmonic oscillator, are Hermitian.

Less trivial example: momentum \hat{p} operator

$$
\langle\hat{p}\rangle=\underbrace{\int \Psi^{*} \hat{p} \Psi d x}_{\langle\Psi \mid \hat{p} \Psi\rangle}=-i \hbar \int_{\text {Just using definition of operator } p} \Psi^{*} \frac{d}{d x} \Psi d x
$$

$$
\int_{-\infty}^{\infty} \Psi^{*} \frac{d}{d x} \Psi d x \underbrace{\left.\substack{\text { By parts } \\=\\ \Psi^{*} \\-\infty} \int_{-\infty}^{\infty}\left(\frac{d}{d x} \Psi^{*}\right) \Psi d x\right]}_{=0 \text { in the Hilhert space }}
$$

Check for
Thus, so far $\langle\Psi \mid \hat{p} \Psi\rangle=-i \hbar \int \Psi^{*} \frac{d}{d x} \Psi d x$ Test2!

$$
\begin{gathered}
=(-i \hbar)\left(\Theta \int_{-\infty}^{\infty}\left(\frac{d}{d x} \Psi^{*}\right) \Psi d x\right)=\int_{-\infty}^{\infty}\left(-i \hbar \frac{d}{d x} \Psi\right)^{*} \Psi d x=\langle\hat{p} \Psi \mid \Psi\rangle \\
\text { Because }(-i)(-1)=(-i)^{\star} \text {. Or }(\mathrm{ab})^{\star}=a^{\star} b^{\star}
\end{gathered}
$$

Because $\langle\Psi \mid \hat{\rho} \Psi\rangle=\langle\hat{\rho} \Psi \mid \Psi\rangle$

then, \hat{p} is a "Hermitian operator"
-i $\frac{d}{d x}$ is Hermitian (\hbar is just a constant)
$-\frac{d}{d x}$, then, is not Hermitian alone
$\left(-i \frac{d}{d x}\right)^{2}$ is Hermitian
(product of two Hermitians is Hermitian)
$\hat{H}=\hat{p}^{2} / 2 m+V(\hat{x})$ is Hermitian

