For the definition of Hermitian operators most books require using two different functions $f(x)$ and $g(x)$. Steps are the same as we did, no worries. This more general form is sometimes useful, as the practice exam will show.

$$
\langle f \mid \hat{Q} g\rangle=\langle\hat{Q}, f \mid g\rangle
$$

If \hat{Q} is NOT Hermitian, like $d / d x$, then the definition of Hermitian of an operator (a.k.a. Hermitian conjugate, or adjoint) is the operator \hat{Q}^{\dagger} that satisfies:

$$
\langle f \mid \hat{Q} g\rangle=\left\langle\hat{Q}^{\dagger} f \mid g\right\rangle
$$

Examples: $(d / d x)^{\dagger}=-(d / d x),(i)^{\dagger}=-i$ (for a complex number "dagger" is the same as "conjugation"), $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ see next.

PROBLEM 2, practice Test2, 2022: (a) Consider two arbitrary operators \hat{A} and \hat{B} in a Hilbert space. Consider now their product $\hat{A} \hat{B}$. Find the Hermitian of the product i.e. find $(\hat{A} \hat{B})^{\dagger}$, using twice the straightforward definition of Hermitian of an operator, discussed in lecture Oct. 26 i.e. $\langle f \mid \hat{Q} g\rangle=\left\langle\hat{Q}^{\dagger} f \mid g\right\rangle$
$\langle f \mid \hat{A} \hat{B} g\rangle=\left\langle\hat{A}^{+} \mid \hat{B} g\right\rangle=\left\langle\hat{B}^{+} \hat{A}^{+} f \mid g\right\rangle$
Thus, baxd on $\left\langle f \mid \hat{Q}_{\rho}\right\rangle=\left\langle\hat{Q}^{+} f \mid p\right\rangle$ we conclude $\left.\hat{A} \hat{B}\right)^{+}=\hat{B}^{+} \hat{A}^{+}$
(b) Consider the operator $\hat{O}=i \hat{p}$, where i is the imaginary unit and \hat{p} the standard momentum operator which you already know is Hermitian. Is the operator \hat{O} Hermitian in a Hilbert space? Solve this problem by any procedure you wish. But you cannot answer tersely just "yes" or "no": need to justify in some logical manner your answer.

$$
(\hat{i} \hat{p})^{\dagger}=\hat{p}^{\dagger} \hat{i}^{\dagger}=\hat{p}(-i)=-i \hat{p}
$$

No, the operator is not Hermitian due to the extra sign

Alternative solution of (b): What is the Hermitian of ip ie. (ip) ${ }^{\dagger}$?
$\hat{p}=+\hbar \frac{d}{d x}$
$\langle\hat{p}\rangle=\int \Psi^{*} i \hat{p} \Psi d x=+\hbar \int \Psi^{*} \frac{d}{d x} \Psi d x$
$\langle\Psi \mid \hat{p} \Psi\rangle \quad$ and using ix $(-i)=+1$.

$$
\int_{-\infty}^{\infty} \Psi^{*} \frac{d}{d x} \Psi \underbrace{\text { By in the Hilbert s space }}_{=0} \underset{-\infty}{=\left.\Psi^{*} \Psi\right|_{-\infty} ^{\infty}}-\int_{-\infty}^{\infty}\left(\frac{d}{d x} \Psi^{*}\right) \Psi d x
$$

This framed green formula is the same as used before to show the momentum is Hermitian.

Thus, so far $\langle\Psi \mid \hat{p} \Psi\rangle=+\hbar \int \Psi^{*} \frac{d}{d x} \Psi d x$

$$
=(+\hbar)\left(-\int_{-\infty}^{\infty}\left(\frac{d}{d x} \Psi^{*}\right) \Psi d x\right)=\int_{-\infty}^{\infty}\left(-\hbar \frac{d}{d x} \Psi\right)^{*} \Psi d x=\langle\hat{i} \Psi \mid \Psi\rangle
$$

Then: $(i \hat{p})^{\dagger}=-i \hat{p}$ ie. not Hermitian, but anti-Hermitian.

3.2.2 "Determinate" States

The "stationary states" of the \hat{H} Hamiltonian, Ψ_{n}, have a sharp energy E_{n}. Can we do the same for other operators Q ?

Similarly as when we used to write $\hat{H} \Psi_{n}(x)=E_{n} \Psi_{n}(x)$, we define eigenfunctions of hermitian $\hat{Q}, f_{q}(x)$, such that

$$
\hat{Q} f_{q}(x)=q f_{q}(x)\left[q=q_{1}, q_{2}, q_{3}, \ldots\right]
$$

" q " is just a number, called the eigenvalue of the operator \hat{Q}. The reason for the language is the similarity to a matrix operation $\mathrm{Ta}=\lambda \mathrm{a}$ (see Appendix A.5). There are many $\lambda=\lambda_{1}, \lambda_{2}, \ldots$

Example: in Chapter 4 we will discuss eigenfunctions of the angular momentum operator \hat{L}, the "spin" \hat{S}, etc.

Example: the momentum operator \hat{p}.

First we need an eigenfunction $f_{p}(x)$ such that

Given an arbitrary wave function $\Psi(x, t)$, if we would time we would discuss the analog of $c_{n}=\left\langle f_{n} \mid f\right\rangle$

PROBLEM 4, practice Test, 2022: Consider the wave function

$$
\psi(x)=\sin (\pi x / a)-i \cos (\pi x / a)
$$

(a) Prove that $\psi(x)$ is an eigenfunction of the linear momentum operator.
(b) Provide the associated eigenvalue.
(a) The opertor is $-i \hbar \frac{d}{d x}=\hat{p}$, then

$$
\begin{aligned}
& \hat{p} \psi=(-i \hbar) \frac{d}{d x}\left[\sin \left(\frac{\pi x}{a}\right)-i \cos \left(\frac{\pi x}{a}\right)\right]= \\
& =(i \hbar)\left[\frac{\left.\pi \cos \left(\frac{\pi x}{a}\right)-i \frac{\pi}{a}\left(-\sin \left(\frac{\pi x}{a}\right)\right)\right]=\left(-\frac{i \hbar \pi}{a}\right) \times}{\quad \times\left[\cos \left(\frac{\pi x}{a}\right)+i \sin \left(\frac{\pi x}{a}\right)\right]=\left(\frac{\hbar \pi}{a}\right)\left[\sin \left(\frac{\pi x}{a}\right)-i \cos \left(\frac{\pi x}{a}\right)\right]}\right.
\end{aligned}
$$

Yes, it is eigenfunction.
(b) Eigenvalue is $\left(\frac{\hbar \pi}{0}\right)$.

There are many theorems for Hermitian operators, the operators that matter for observables, that I will NOT prove:
(1) The eigenvalues q are real, like the energies E_{n} were (see page 98 for a 100% math proof). If you measure Q in any $\Psi(x, t)$, you will get one of the q's.
(2) The eigenfunctions $f_{q}(x)$ for different q 's are orthonormal -- sometimes using Kronecker delta, sometimes Dirac delta -- like $\Psi_{n}(x)$ for energies were.
(3) The eigenfunctions are complete, like $\Psi_{n}(x)$
for energies were.
Caveat: careful with degenerate states i.e. those with the same eigenvalue q.

Generalized uncertainty principle. Proof in pages at

 the end of Ch3 if you are interested in.$$
\sigma_{A}^{2} \sigma_{B}^{2} \geq\left(\frac{1}{2 i}\langle[\hat{A}, \hat{B}]\rangle\right)^{2}
$$

Assumes र..> is in a normalized to 1 state, and both operators must be Hermitian.

Example, if $\hat{A}=\hat{x}$ and $\hat{B}=\hat{p}$, then $[\hat{x}, \hat{p}]=i \hbar$

$$
\sigma_{x}^{2} \sigma_{p}^{2} \geq\left(\frac{1}{2 i} i \hbar\right)^{2}=\left(\frac{\hbar}{2}\right)^{2} \quad \sigma_{x} \sigma_{p} \geq \frac{\hbar}{2}
$$

It can also be trivial: if $\hat{A}=\hat{x}$ and $\hat{B}=\hat{x}^{2}$, then $\sigma_{x} \sigma_{x 2}=0$ because they conmute

