About Test2:

Problem 1 was in practice. I just flipped the $\mathrm{V}(\mathrm{x})$. Problem 2 was in HW6, just changing V0 to 2V0 Problem 3 was very similar to practice. Problem 4 was very similar to practice. Problem 5 was identical to practice (changed a to b)

How to find your grade?

Assume in HW1,2,3,4,5,6,7 your numbers are
$40+38+25+16+21+18+20=178$. The max number of points was $60+40+30+20+30+30+30=240$. Then your HW contribution is $(178 / 240) \times 40=29.67 \sim 30$.

Suppose your test scores were 35+33=68. Max number of points $50+50=100$. Then your Test contribution to the grade is $(68 / 100) \times 60=40.8 \sim 41$.

Then your \% number of points is 30+41=71 from a max of 100.
Go to the syllabus in the web page. 71 corresponds to B -.
Last day to drop with a W : November 10.
Should you take P412 in Spring? If you wish to consult with me, go ahead. I recommend grade B or higher.

In a compact form:

$$
Y_{l}^{m}(\theta, \phi)=\epsilon \sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}} e^{i m \phi} P_{l}^{m}(\cos \theta)
$$

with $\epsilon=(-1)^{m}$ for $m \geq 0$ and $\epsilon=1$ for $m \leq 0$ and the orthonormality condition

$$
\int_{0}^{2 \pi} \int_{0}^{\pi}\left[Y_{l}^{m}(\theta, \phi)\right]^{*}\left[Y_{l^{\prime}}^{m \prime^{\prime}}(\theta, \phi)\right] \sin \theta d \theta d \phi=\delta_{l / l^{\prime}} \delta_{m m^{\prime}}
$$

" $/$ " is the azimuthal quantum number (or angular momentum) " m " is the magnetic quantum number (or z-axis projection of the angular momentum)

4.1.3: The Radial Equation

For the angular component we are DONE. But the radial portion depends on $V(r)$, changing from problem to problem.

$$
\text { Reminder: } \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 m r^{2}}{\hbar^{2}}[V(r)-E] R=l(l+1) R
$$

Before proceeding, another redefinition! $u(r)=r R(r)$

$$
d R / d r=d[u(r) / r] / d r=(1 / r) d u / d r-u / r^{2}
$$

$d / d r\left[r^{2} d R / d r\right]=r d^{2} u(r) / d r^{2}$
It is indeed a simplification!
(check formula)

The new radial equation becomes ... (make sure you do the math to prove that this is correct; you have to multiply all by $-\hbar^{2} / 2 \mathrm{mr}$)

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[V+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u
$$

Mathematically identical to a 1D problem (if $r->x, u->\psi$) with an effective potential that includes a centrifugal term:

$$
V_{\mathrm{eff}}=V+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}
$$

Normalization becomes

$$
\int_{0}^{\infty}|u|^{2} d r=1
$$

[because $u(r)=r R(r)$]

Example 4.1: infinite spherical well

$$
V(r)= \begin{cases}0, & \text { if } r \leq a \\ \infty, & \text { if } r>a\end{cases}
$$

(in a HW problem you will solve the infinite cubic well)
Steps very similar to 1D. Same "k" etc., but with a centrifugal component

$$
\frac{d^{2} u}{d r^{2}}=\underset{\substack{\left.\frac{l(l+1)}{r^{2}}-k^{2}\right] u \\ \\ \\ \\ \text { Difference between } \\ \text { 1D and 3D equations }}}{\left[\frac{\sqrt{2 m E}}{\hbar}\right.}
$$

If $l=0$, then it is the exact same Sch. Eq. of the 1D infinite square well! We know the general solution:

$$
\frac{d^{2} u}{d r^{2}}=-k^{2} u \Rightarrow u(r)=A \sin (k r)+B \cos (k r)
$$

But the boundary conditions are different. The condition $u(r=a)=0$ is as before. But $u(r=0)$ is a bit different.

The true function we need is $R(r)=u(r) / r$. Thus, we must choose $B=0$ to avoid a divergence at $r=0$ A nonzero " A " is ok because limit $r \rightarrow 0, \sin (k r) / k r=1$.

Then, at "the end of the day" it is all the same as in 1D:
$\sin (k a)=0 \rightarrow k a=N \pi$, with

$$
E_{N O}=\frac{N^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
$$

$$
N=1,2,3, \ldots \rightarrow
$$

Now we have to place all together!
In general:

$$
\underset{N / m}{\psi(r, \theta . \phi)} \underset{\sim}{\sim} \underset{N l}{(r)} Y_{l}^{m}(\theta, \phi)
$$

$$
\underset{N I}{R(r)}=\underset{N I}{u(r) / r}
$$

For $1=0: Y_{0}^{0}(\theta, \phi)=1 / \sqrt{4 \pi}$
for $I=0, \underset{N=0}{u(r)}=A \sin (k r)$ with normalization $A=\sqrt{2 / a}$
Then, the final answer for arbitrary $N, l=0, m=0$ is:

$$
\psi_{N 00}=\frac{1}{\sqrt{2 \pi a}} \frac{\sin (N \pi r / a)}{r} \quad \begin{aligned}
& \text { Common error: } \\
& \text { forgetting this } r .
\end{aligned}
$$

$$
\psi_{N 00}=\frac{1}{\sqrt{2 \pi a}} \frac{\sin (N \pi r / a)}{r}
$$

These $1=0$ wave functions have no angular dependence (spherical harmonic is a constant). Only r dependence for $l=0$.

But they have nodes in the r axis [for index N, there are $N-1$ nodes (i.e. spherical surfaces where the wave function vanishes)].

THIS PORTION IS FYI ONLY. For arbitrary " 1 " the solution is complicated because of the centrifugal term.

$$
\underset{N I}{R(r)}=A_{j_{l}}(k r)
$$

Ksel
Spherical Bessel function of order " 1 " denoted as $j_{1}(x)$

$$
\begin{aligned}
& j_{0}=\frac{\sin x}{x} \\
& j_{1}=\frac{\sin x}{x^{2}}-\frac{\cos x}{x} \\
& j_{2}=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x
\end{aligned}
$$

Energies?

$$
k \equiv \frac{\sqrt{2 m E}}{\hbar}
$$

Boundary condition
equivalent to $\sin (\mathrm{ka})=0$ is now:
k's that cancel j, no longer "easy" (Eq.4.49). And they depend on I.

Do NOT worry about the Spherical Neumann function of order " 1 " denoted as $n_{1}(x)$. They diverge at $\mathrm{r}=0$.

As $x->0,1=0$ converges to 1 .
This " s " wave is nonzero at $r=0$
$i_{0}=\frac{\sin x}{x}$
$j_{1}=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}$

$$
j_{2}=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x
$$

As $x->0,1=1,2, \ldots$ converge to 0 .
" p, d, \ldots. " are zero at $r=0$.

We have to start thinking in terms of multiple "quantum numbers" and the labels become complicated.

We can also count with a single index " n ", but here is not illuminating.

For the "spherical well" we have to use the labels N and I. For each I (such as $0,1,2, \ldots$), then $N=1,2,3, \ldots$ labels solutions from the bottom up

