2.4 The free particle

The free particle has $V(x)=0$ everywhere. Classically, it is easy to solve, such as a ball moving straight in empty space. However, in QM it is more subtle and complicated.

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \quad \text { or } \quad \frac{d^{2} \psi}{d x^{2}}=-k^{2} \psi \text { with } k \equiv \frac{\sqrt{2 m E}}{\hbar}
$$

If you try $\quad \psi(x)=A e^{i k x}+B e^{-i k x} \quad$ it works.
k, and thus E, are unrestricted since there is no boundary. No discrete levels but a continuum of levels.

Adding time dependence, it becomes:

$$
\begin{gathered}
\Psi(x, t)=A e^{i k\left(x-\frac{\hbar k}{2 m} t\right)}+B e^{-i k\left(x+\frac{\hbar h}{2 m} t\right)} \\
\text { where } E=\hbar^{2} k^{2} / 2 m
\end{gathered}
$$

Introduce $v=\hbar k / 2 m$ as a velocity (check units!)
Then, in exponents we have $(x \pm v t)$

Two paradoxes:
$v=\hbar k / 2 m=p / 2 m$ (after using de Brogie formula) $=\frac{1}{2}$ classical formula $v=p / m$
Solutions are not normalizable because $\Psi \star \Psi=1$ for all x, thus integral over x diverges: no stationary states for free particles. : linear combination of plane waves).

Because k is unrestricted, linear combinations are integrals instead of sums.

$$
\begin{gathered}
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi(k) e^{i\left(k \cdot x-\frac{n k^{2}}{2 m} t\right)} d k \\
\phi(k) d k \text { is like } c_{n} \text { in } \underbrace{\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \sqrt{\frac{2}{a} \sin \left(\frac{n \pi}{a} x\right) e^{-i\left(n^{2} \pi^{2} \hbar / 2 m a^{2}\right) t}}}_{\text {infinite square well as example }}
\end{gathered}
$$

Like before, we are given the $t=0$ wave function and from there we must find $\phi(k)$.

$$
\begin{aligned}
& \quad \Psi(x, 0)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \underset{\text { unknown }}{\text { In a typical problem }} \text { this is provided }
\end{aligned}
$$

We use Fourier analysis (page 56) to find $\phi(k)$.

Applied to our problem, the formula to use is:

Example 2.6: evolution of a localized $t=0$ state

Given $\Psi(x, 0)=\left\{\begin{array}{ll}A, & \text { if }-a<x<a, \\ 0, & \text { otherwise, }\end{array}\right.$ find $\Psi(x, t)$
First step: normalization at $t=0$

$$
1=\int_{-\infty}^{\infty}|\Psi(x, 0)|^{2} d x=|A|^{2} \int_{-a}^{a} d x=2 a|A|^{2} \Rightarrow A=\frac{1}{\sqrt{2 a}}
$$

Second, calculate $\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \Psi(x .0) e^{-i k x} d x$

$$
\begin{array}{rlrl}
\phi(k) & =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 a}} \int_{-a}^{a} e^{-i k x .} d x=\left.\frac{1}{2 \sqrt{\pi a}} \frac{e^{-i k . x}}{-i k}\right|_{-a} ^{a} & \text { Check } \\
& =\frac{1}{k \sqrt{\pi a}}\left(\frac{e^{i k a}-e^{-i k a}}{2 i}\right)=\frac{1}{\sqrt{\pi a}} \frac{\sin (k a)}{k} . & & \text { every } \\
\text { step! }
\end{array}
$$

Third, and last, use $\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi(k) e^{i\left(k \cdot x-\frac{n k^{2}}{2 m} t\right)} d k$

This integral must be computed numerically, although special limits can be done analytically.
(1) If a is small, then $t=0$ state is localized in space

$$
\begin{array}{r}
\frac{\Psi(x, 0) \uparrow}{a}{ }_{a} \times \sqrt{\sqrt{\pi a}} \frac{1}{k} \approx \sqrt{\frac{\sin (k a)}{\pi}} \\
\sin (k a) \approx k a
\end{array}
$$

(2) If a is large, then $t=0$ state is spread in space

Returning to $\Psi(x, t)=\frac{1}{\pi \sqrt{2 a}} \int_{-\infty}^{\infty} \frac{\sin (k a)}{k} e^{i\left(k \cdot x-\frac{n k^{2}}{2 m} t\right)} d k$
and numerically calculating integral leads to spreading of initial state (general: width increases as time increases)

The paradox $v=(1 / 2) p / m$ can be addressed in the context of wave packets. The speed of the sinusoidal components (phase velocity) is not important. The envelope's speed (group velocity) is more relevant. Movies coming soon..

$$
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi(k) e^{i(k x-\omega t)} d k
$$

Assume $\phi(k)$ is narrowly peaked $k=k_{0}+s$. Thus, $k^{2} \sim k_{0}{ }^{2}+2 k_{0} s$ (where s^{2} was dropped).

$$
\Psi(x, t) \cong \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi\left(k_{0}+s\right) e^{i\left[\left(k_{0}+s\right) x-\left(\omega_{0}+\omega_{0}^{\prime} s\right) t\right]} d s
$$

$$
\begin{aligned}
& \Psi(x, t) \cong \frac{1}{\sqrt{2 \pi}} \int_{\text {Moves outside integral }}^{\int_{-\infty}^{+\infty} \phi\left(k_{0}+s\right) e^{i\left[\left(k_{0}+s\right) x-\left(\omega_{0}+\omega_{0}^{\prime} s\right) t\right]} d s} d \\
& -\omega_{0}{ }^{\prime} s t=-\omega_{0}{ }^{\prime} s t+k_{0} \omega_{0}{ }^{\prime} t-k_{0} \omega_{0}{ }^{\prime} t= \\
& =+k_{0} \omega_{0}{ }^{\prime} t-\left(k_{0}+s\right) \omega_{0}{ }^{\prime} t \\
& \Psi(x, t) \cong \frac{1}{\sqrt{2 \pi}} e^{i\left(-\omega_{0} t+k_{10} \omega_{0}^{\prime} t\right)} \int_{-\infty}^{+\infty} \phi\left(k_{0}+s\right) e^{i\left(k_{0}+s\right)\left(x-\omega_{0}^{\prime} t\right)} d s
\end{aligned}
$$

Then

Because

$$
\Psi(x, 0)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi\left(k_{0}+s\right) e^{i\left(k_{0}+s\right) \cdot x} d s
$$

then

$$
\Psi(x, t) \cong \underbrace{e^{-i\left(\omega_{0}-k_{0} \omega_{0}^{\prime}\right) t}}_{\begin{array}{l}
\text { Not important } \\
\text { for }|\Psi|^{2}
\end{array}} \underbrace{\Psi\left(x-\omega_{0}^{\prime} t, 0\right)}_{\begin{array}{l}
\text { Same shape as } \\
\text { original wave packet } \\
\text { but moving! }
\end{array}} \quad \omega_{\text {velocity of }} \quad \text { wave packet }
$$

Velocity of wave packet is correctly $\mathrm{v}_{\text {classical }}$!

