For each value of $z_{0} \equiv \frac{a}{\hbar} \sqrt{2 m V_{0}}$ there will be a different finite number of solutions. Consider two special limits:
(1) V_{0} large i.e. a very deep well. This means z_{0} large.

\rightarrow solutions are
($n=1,3,5, \ldots$ odd)

$$
z_{n}=n \pi / 2
$$

Because $z \equiv l a$, then $z_{n}=n \pi / 2$ means $I_{n}=n \pi / 2 a$, and
$l_{n} \equiv \frac{\sqrt{2 m\left(E_{n}+V_{0}\right)}}{\hbar}$ thus

$$
E_{n}+V_{0} \cong \frac{n^{2} \pi^{2} \hbar^{2}}{2 m(2 a)^{2}}
$$

In red are "half" the solutions (those "even" under $x \rightarrow-x$, i.e. n odd) that we found before for the infinite square well of width " $2 a$ ".

In blue are the "other half" that you will do in HW6.

For any large but finite V_{0} the number of solutions will be large but finite as well.
(2) V_{0} small i.e. a very shallow well. This means z_{0} small.

As z_{0} is reduced, the number of solutions decreases but always one survives no matter how weak the potential is!

Consider now the scattering states E>0 (unrestricted).

Continuity of $\psi \int A e^{-i k a}+B e^{i k a}=-C \sin (l a)+D \cos (l a)$ and $\mathrm{d} \psi / \mathrm{dx}$ at $\mathrm{x}=-\mathrm{a}$:

$$
i k\left[A e^{-i k a}-B e^{i k a}\right]=l[C \cos (l a)+D \sin (l a)]
$$

Continuity of ψ
and $d \psi / d x$ at $x=+a:$$\left\{\begin{array}{c}C \sin (l a)+D \cos (l a)=F e^{i k a} \\ l[C \cos (l a)-D \sin (l a)]=i k F e^{i k a}\end{array}\right.$

This system of 4 equations and 5 unknowns can be solved as for the delta potential via ratios.

Recall $T=|F|^{2} /|A|^{2}$ is the transmission coefficient
The result is

$$
T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}\right)
$$

Thus, for some particular energies there is perfect transmission !! And they happen to be the solutions of the infinite square well. Weird QM!

$$
E_{n}+V_{0}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m(2 a)^{2}}
$$

SOME MOVIES SHOWN TO STUDENTS ...

Movie 1: probability shown, intermediate weird state with oscillations, plotting prob and potential together is confusing, not same units.
https://www.youtube.com/watch?v=4-PO-RHQsFA
From web site: "FDTD simulation of a Gaussian wave packet with kinetic energy of 500 eV . The potential barrier has a height of 600 eV , and a thickness of 25 pm . The wave packet partially tunnels through the barrier, giving a total probability of about 17% of finding the particle on the other side."

Movie 2: Re and Im out of phase causing smooth probability, until collision occurs. Note vgroup and vphase are different.
https://www.youtube.com/watch?v=3wFXHwRP4s
From web site: "FDTD simulation of a Gaussian wave packet with kinetic energy of 500 eV . The potential barrier has a height of 600 eV , and a thickness of 25 pm . The black line represents the real part of the wave function, while the red line represents the imaginary part. The actual probability amplitude is found by taking the magnitude-square of the total wave function. The wave packet partially tunnels through the barrier, giving a total probability of about 17\% of finding the particle on the other side. This simulation was written and rendered in Matlab".

Movie 3: well and barrier of same depth/height behave similar for scattering state (not for bound states of course). https://www.youtube.com/watch?v=cV2fkDscwvY

Movie 4: Besides middle obstacle, walls far right and left added creating a huge box that can reflect. Wave packet widths grows, eventually particle spreads uniformly. https://www.youtube.com/watch?v=YaEvanuJcz4

Movie 5: Case where width is smaller than obstacle, then wave packet can collide twice within the same obstacle! And actually many times.
https://www.youtube.com/watch?v=GjCUlcOyhLc
Movie 6: 2D collision. Now some aspects seem like tunneling and other aspects seem like classical scattering at an angle.
https://www.youtube.com/watch?v=8qOXof9 34M

