

In addition to average, median, and most probable, there is another very important quantity to characterize a histogram: the standard deviation (or width). Like "error bars".


$$
\begin{aligned}
& \sigma=\sqrt{\left\langle j^{2}\right\rangle-\langle j\rangle^{2}} \quad\left\langle j^{2}\right\rangle=\sum_{j=0}^{\infty} j^{2} P(j) \\
& \text { andard deviation }
\end{aligned}
$$

When we use continuous variables (say $x$ instead of $j$ ) then we have to talk about a probability density.
$\left\{\begin{array}{l}\text { probability that an individual (chosen } \\ \text { at random) lies between } x \text { and }(x+d x)\end{array}\right\}=\rho(x) d x$

$$
\begin{array}{cc}
P_{a b}=\int_{a}^{b} \rho(x) d x & 1=\int_{-\infty}^{+\infty} \rho(x) d x \\
\langle x\rangle=\int_{-\infty}^{+\infty} x \rho(x) d x & \sigma^{2} \equiv\left\langle(\Delta x)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}
\end{array}
$$

So $|\Psi(x, t)|^{2}$ is a probability density.

### 1.4 Normalization

Based on the statistical interpretation of $|\psi(x, t)|^{2}$, its integral has to be 1 because the particle must be somewhere.

$$
\int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x=1
$$

Thus, normalizing to 1 is just common sense.

If we are given a not normalized wave function $f(x, t)$, we simply choose a multiplicative constant $A$ such that

$$
|A|^{2} \int_{-\infty}^{+\infty}|f(x, t)|^{2} d x=1 \quad \begin{aligned}
& \text { The normalization is up to a } \\
& \text { constant phase factor that, usually, } \\
& \text { has no physical importance. }
\end{aligned}
$$

Notes: If $\psi=0$, then the integral can never be 1.
If the integral $\int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x$ diverges it cannot be normalized.
We will, mainly, deal with square integrable wave functions.

For this to make sense, once we normalize to 1 at $t=0$ the normalization must remain 1 at all times. Otherwise particles will be created or removed varying $t$. Is this true?

$$
\begin{aligned}
& \frac{d}{d t} \int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x=\int_{-\infty}^{+\infty} \frac{\partial}{\partial t}|\Psi(x, t)|^{2} d x \\
& \frac{\partial}{\partial t}|\Psi|^{2}=\frac{\partial}{\partial t}\left(\Psi^{*} \Psi\right)=\Psi^{*} \frac{\partial \Psi}{\partial t}+\frac{\partial \Psi^{*}}{\partial t} \Psi
\end{aligned}
$$

But $\underbrace{\frac{\partial \Psi}{\partial t}=\frac{i \hbar}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}-\frac{i}{\hbar} V \Psi}$ and $\underbrace{\frac{\partial \Psi^{*}}{\partial t}=-\frac{i \hbar}{2 m} \frac{\partial^{2} \Psi^{*}}{\partial x^{2}}+\frac{i}{\hbar} V \Psi^{*}}$

Obtained by multiplying all terms in Sch. Eq. by -i/え


Remember $1 / i=-i$ because $i^{2}=-1$

The terms with V cancel out after addition.

## Check! 1

$$
\begin{aligned}
& \text { Check! } \\
& \frac{\partial}{\partial t}|\Psi|^{2}=\frac{i \hbar}{2 m}\left(\Psi^{*} \frac{\partial^{2} \Psi}{\partial x^{2}}-\frac{\partial^{2} \Psi^{*}}{\partial x^{2}} \Psi\right) \stackrel{\downarrow}{=} \frac{\partial}{\partial x}\left[\frac{i \hbar}{2 m}\left(\Psi^{*} \frac{\partial \Psi}{\partial x}-\frac{\partial \Psi^{*}}{\partial x} \Psi\right)\right] \\
& \begin{aligned}
& \frac{d}{d t} \int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x=X_{-\infty}^{+\infty} \frac{\partial}{\partial \lambda}\left[\frac{i \hbar}{2 m}\left(\Psi^{*} \frac{\partial \Psi}{\partial x}-\frac{\partial \Psi^{*}}{\partial x} \Psi\right)\right] d x \quad \begin{array}{l}
\text { Integrating a derivative, } \\
\text { cancels the two operations. }
\end{array} \\
&=\left.\frac{i \hbar}{2 m}\left(\Psi^{*} \frac{\partial \Psi}{\partial x}-\frac{\partial \Psi^{*}}{\partial x} \Psi\right)\right|_{-\infty} ^{+\infty}=0 \\
& \text { If } \Psi \rightarrow 0 \text { as } x \rightarrow( \pm) \text { infinity }
\end{aligned}
\end{aligned}
$$

If $\psi$ is normalized at $t=0$, it remains normalized at all times. Crucial for all this to make sense!

Expectation value of $x$

$$
\langle x\rangle=\int_{-\infty}^{+\infty} x|\Psi(x, t)|^{2} d x
$$

$\longleftarrow$ Note: $\langle x\rangle(t)$ can be time dependent.

Interpretation: $\langle x\rangle$ is the average of measurements performed on an ensemble of identical systems.


## Expectation value of momentum p


$\underset{\text { Integration by parts }}{\text { (back cover of book): }} \quad \int_{a}^{b} f \frac{d g}{d x} d x=-\int_{a}^{b} \frac{d f}{d x} g d x+\left.f g\right|_{a} ^{b}$

$$
\frac{d\langle x\rangle}{d t} \stackrel{\text { Check! }}{\stackrel{i}{=}-\frac{i \hbar}{2 m} \int^{d}(\Psi^{*} \frac{\partial \Psi}{\partial x}-\underbrace{\left.\frac{\partial \Psi^{*}}{\partial x} \Psi\right)} d x . d x=d x / d x=1} \underbrace{g} d x
$$

$$
\begin{aligned}
& \frac{d\langle x\rangle}{d t}=-\frac{i \hbar}{m} \int \Psi^{*} \frac{\partial \Psi}{\partial x} d x \\
& \text { Check! } \\
& \text { By parts again } \\
& \langle p\rangle=m \frac{d\langle x\rangle}{d t}=-i \hbar \int\left(\Psi^{*} \frac{\partial \Psi}{\partial x}\right) d x
\end{aligned}
$$

In summary, for $\langle x\rangle$ and $\langle p>$ we find

$$
\begin{aligned}
& \langle x\rangle=\int \Psi^{*}{\underset{\sim}{x}}_{x} \Psi d x \quad\langle p\rangle=\int \Psi^{*}\left(\frac{\hbar}{\frac{\hbar}{i} \frac{\partial}{\partial x}}\right) \Psi d x \\
& x \text { "operator" is } \\
& \text { just "multiply by } x \\
& \text { p "operator" is more } \\
& \text { complicated! }
\end{aligned}
$$

Many other operators are functions of $x$ and $p$. For instance, for the kinetic energy $T=p^{2} / 2 m$ use:

$$
p^{2}=\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right)\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right)=-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}
$$

By this procedure a "dictionary" between classical and quantum quantities can be established.

