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In addition to average, median, and most probable, there is

another very important quantity to characterize a histogram:
the standard deviation (or width). Like “error bars"”.
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When we use continuous variables (say x instead of j)
then we have to talk about a probability density.

probability that an individual (chosen\

at random) lies between x and (x + dx) ] = p(x)dx

b 400
Py, = f p(x)dx I = f p(x)dx
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+00

(x) = [ xo(x)dx o

— 00

((Ax)?) = (x%) — (x)*

So |W¥(x,t)|2 is a probability density.



1.4 Normalization

Based on the statistical interpretation of |y(x,t)|2, its
integral has to be 1 because the particle must be somewhere.

100 Thus, normalizing to 1
2 . ’
[_m [Wx, D] dx =1 is just common sense.
If we are given a not normalized wave function f(x,1),

we simply choose a multiplicative constant A such that

+00 The normalization is up to a
IAIZ[ |f(x,1)|2 dx = 1 constant phase factor that, usually,
—00 has no physical importance.

Notes: If y=0, ‘rben the integral can never be 1.
If the in’regr'alf_ we niPdx diverges it cannot be normalized.

We will, mainly, deal with square integrable wave functions.



For this to make sense, once we normalize to 1 at t=0 the
normalization must remain 1 at all times. Otherwise
particles will be created or removed varying t. Is this true?
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Check!
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If v = 0as x > (L) infinity

If v is normalized at t=0, it remains normalized at all times.
Crucial for all this to make sensel



Expectation value of x

oo ) . Note: <x>(t) can be
x|W(x. 1) dx time dependent.

(v) =

[ —20

Interpretation: <x> is the average of measurements
performed on an ensemble of identical systems.




Expectation value of momentum p

<velocity> See two pages back
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In summary, for <x>and <p> we find

(x)=[\ll* X Wdx {p) =[\P* (EE—)\Pda
Lo _ I 0X

11} " -
X OR‘ZPGTQP 1S p "operator” is more
just "multiply by x complicated!

Many other operators are functions of x and p.
For instance, for the kinetic energy T=p?/2m use:

a2
Pz_(ha (ha g0 :
I 0X I 0X dx-~

By this procedure a "dictionary” between classical and
quantum quantities can be established.
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