Chapter 2: time-indep Sch. Eq.

Now the real work starts: how do we solve the Sch. Eq.?
In general, the Sch. Eq. has a time-dependent potential:
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where V=V(x,1). For example, the V(x,t) of an oscillating electric field E(x,1).
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Start with something simpler: a time independent
potential V=V(x). Then use "separation of variables".
Assume:
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Divide by ‘lﬁqo to get:
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Time dependence is easy herel
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The solutions of this time-indep. Sch. Eq. are important
for three reasons [(1,2) given here, (3) later in this presentation]:

(1) They are stationary states: | W(x, 1) = ¢r(x)e  E//"
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(2) They have "sharp” energies.
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Classical "Hamiltonian" p> (ﬁ/f)(a/a-'\')

Now the time-indep. Sch. Eq. looks "simple”:
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Then, the constant E is the energy |
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Why E is "sharp"?
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Thus: Gfi = (I'A!‘?') — (H)Y*=E



2.2 The infinite square well
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"Inside” the potential E will be discrete.



The diff. eq. Y _ —k*y  has as a solution:

dx?

¥ (x) = Asinkx 4+ B coskx

A and B are constants fixed by boundary conditions.

In this case, the only bound. cond. we know are

¥ (0) =y¥(a) =0
The first one is easy:

W (0) = Asin0+ BcosO =B =0
=0 =1




The second one becomes:

"a" is width of well

¥(a) = Asinka or sinka = 0

ka =8 *m, +2x, =31, ...

A=0 or k=0 leads to zero wave function, not normalizable.
The "-" solutions are redundant because sin(x) is odd.

Only ni
solutions ky = — withn=1,2.3, ...
are then:

Note that this is a discrete set of
solutions, thus energies will be discrete.
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Energies are quantized in QM,
while in classical mechanics inside
the well you can have any energy

(no gravity, no friction, elastic collisions with walls).
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¥ =0 at left wall of box.



To finish the problem neatly, find A such that the
wave function is normalized to 1.

k=nrn/a, use u=kx, result n
careful limits of integration independent

a 9 2 l 5 d -
[ |AI“ Sin"(kX) dx = |Al-§' =1 - y:SIn (u)
’ AN AN T

A 3w\ SSwo3w TE\ .
= i N

The final complete solution then is:
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