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Chapter 2: time-indep Sch. Eq.

In general, the Sch. Eq. has a time-dependent potential:

where V=V(x,t). For example, the V(x,t) of an oscillating electric field E(x,t).

Start with something simpler: a time independent
potential V=V(x). Then use “separation of variables”.   
Assume:

Now the real work starts: how do we solve the Sch. Eq.? 
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= E 
(constant   
with important   
physical meaning)Function 

of t only
Function 
of x only

Divide by           to get: 

(x)



Coordinate 
dependence is 
not easy! 

(x)
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Time dependence is easy here!

(x)
(x) (x) (x) Constant to 

be found
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The solutions of this time-indep. Sch. Eq. are important 
for three reasons [(1,2) given here, (3) later in this presentation]:

All expectation values of 
operators O(x,p) are 
constant in time.

Constant 
in time

= 0

(1) They are stationary states: 
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(2) They have “sharp” energies. 

Classical “Hamiltonian” 

Now the time-indep. Sch. Eq. looks “simple”: 

QM 

rules 

p ^

operators are 
denoted by ^ 
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Then, the constant E is the energy ! 

=1 

^

Why E is “sharp”? 

=1 

^

sharp!
Thus: ^ ^
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2.2 The infinite square well

inside V=0

outside

E is to be determined by boundary 
conditions. It can’t be any number!  
“Inside” the potential E will be discrete.
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The diff. eq.                         has as a solution:

A and B are constants fixed by boundary conditions.

In this case, the only bound. cond. we know are

The first one is easy: 

=0 =1 
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The second one becomes:

or

A=0 or k=0 leads to zero wave function, not normalizable. 
The “-” solutions are redundant because sin(x) is odd.

x

Note that this is a discrete set of 
solutions, thus energies will be discrete.

Only 
solutions 
are then:

“a” is width of well 
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ground state

Energies are quantized in QM, 
while in classical mechanics inside 
the well you can have any energy 
(no gravity, no friction, elastic collisions with walls).

n=1 
sin(πx/a)

n=2 
sin(2πx/a)

n=3 
sin(3πx/a)

excited states
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To finish the problem neatly, find A such that the 
wave function is normalized to 1.

,

The final complete solution then is:

k=nπ/a,  use u=kx, 
careful limits of integration 

result n 
independent

Y=sin2(u) 
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