Chapter 2: time-indep Sch. Eq.

Now the real work starts: how do we solve the Sch. Eq.?
In general, the Sch. Eq. has a time-dependent potential:

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi
$$

where $V=V(x, t)$. For example, the $V(x, t)$ of an oscillating electric field $E(x, t)$.
Start with something simpler: a time independent potential $\mathrm{V}=\mathrm{V}(\mathrm{x})$. Then use "separation of variables". Assume:

$$
\begin{gathered}
\Psi(x, t)=\psi(x) \varphi(t) \\
\frac{\partial \Psi}{\partial t}=\psi \frac{d \varphi}{d t}, \quad \frac{\partial^{2} \Psi}{\partial x^{2}}=\frac{d^{2} \psi}{d x^{2}} \varphi
\end{gathered}
$$

$$
i \hbar \psi \frac{d \varphi}{d t}=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}} \varphi+V \psi \varphi
$$

Divide by $\psi \varphi$ to get:

$$
\underbrace{i \hbar \frac{1}{\varphi} \frac{d \varphi}{d t}}_{\begin{array}{l}
\text { Function } \\
\text { of } x \text { only }
\end{array}}=\underbrace{-\frac{\hbar^{2}}{2 m} \frac{1}{\psi} \frac{d^{2} \psi}{d x^{2}}+V(x)}_{\begin{array}{l}
\text { with important } \\
\text { physical meaning) }
\end{array}}=E
$$

Time dependence is easy here!

$$
\begin{gathered}
i \hbar \frac{1}{\varphi} \frac{d \varphi}{d t}=E \quad \square \frac{d \varphi}{d t}=-\frac{i E}{\hbar} \varphi \\
\varphi(t)=e^{-i E t / \hbar}
\end{gathered}
$$

Coordinate dependence is not easy! :

$$
-\frac{\hbar^{2}}{2 m} \frac{1}{\psi} \frac{d^{2} \psi}{d x^{2}}+V(x)=E
$$

$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{(x)}}{d x^{2}}+V_{(x)} \psi_{(x)}=E \psi_{(x)}{ }_{c}^{\text {Constant to }}$ be found

The solutions of this time-indep. Sch. Eq. are important for three reasons $[(1,2)$ given here, (3) later in this presentation]:
(1) They are stationary states:

$$
\Psi(x, t)=\psi(x) e^{-i E t / \hbar}
$$

$$
\begin{gathered}
|\Psi(x, t)|^{2}=\Psi^{*} \Psi=\psi^{*} e^{+i E t / \hbar} \psi e^{-i E t / h}=|\psi(x)|^{2} \\
\langle x\rangle=\left.\int_{-\infty}^{+\infty} x|\Psi(x, t)|^{2} d x \quad\right|_{\text {in time }} ^{\text {Constant }}
\end{gathered}
$$

All expectation values of operators $O(x, p)$ are constant in time.

They have "sharp" energies.

$$
\begin{array}{ll}
\underbrace{H(x, p)=\frac{p^{2}}{2 m}+V(x)}_{\text {Classical "Hamiltonian" }} & \stackrel{\text { rules }}{Q M} \hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x) \\
& \hat{p} \rightarrow(\hbar / i)(\partial / \partial x)
\end{array}
$$

Now the time-indep. Sch. Eq. looks "simple":

$$
\hat{H} \psi=E \psi
$$

Then, the constant E is the energy!

$$
\langle\hat{H}\rangle=\int \psi^{*}{\underset{E \psi}{\hat{H} \psi}}_{*}^{\omega} . x=E \int|\psi|^{2} d x=E \underbrace{\int|\Psi|^{2} d x}_{=1}=E
$$

Why E is "sharp"?
$\hat{H}^{2} \psi=\hat{H}(\hat{H} \psi)=\hat{H}(E \psi)=E(\hat{H} \psi)=E^{2} \psi$
$\left\langle\hat{H}^{2}\right\rangle=\int \psi^{*} \hat{H}^{2} \psi d x=E^{2} \int_{=1}^{|\psi|^{2} d x}=E^{2}$
Thus: $\sigma_{H}^{2}=\left\langle\hat{H}^{2}\right\rangle-\langle\hat{H}\rangle^{2}=E^{2}-E^{2}=0$ sharp!

2.2 The infinite square well

E is to be determined by boundary conditions. It can't be any number! "Inside" the potential E will be discrete.

$$
k \equiv \frac{\sqrt{2 m E}}{\hbar}
$$

The diff. eq. $\frac{d^{2} \psi}{d x^{2}}=-k^{2} \psi$ has as a solution:

$$
\psi(x)=A \sin k x+B \cos k x
$$

A and B are constants fixed by boundary conditions.
In this case, the only bound. cond. we know are

$$
\psi(0)=\psi(a)=0
$$

The first one is easy:

The second one becomes:
" a " is width of well
$\psi(a)=A \sin k a \quad$ or $\quad \sin k a=0$

$$
k a=\text { 肘 } \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots
$$

$\mathrm{A}=0$ or $\mathrm{k}=0$ leads to zero wave function, not normalizable. The "-" solutions are redundant because $\sin (x)$ is odd.

Only solutions are then:

$$
k_{n}=\frac{n \pi}{a} . \quad \text { with } n=1,2,3, \ldots
$$

Note that this is a discrete set of solutions, thus energies will be discrete.

ground state

excited states

$$
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
$$

Energies are quantized in QM, while in classical mechanics inside the well you can have any energy (no gravity, no friction, elastic collisions with walls).

To finish the problem neatly, find A such that the wave function is normalized to 1.

$$
\int_{0}^{a}|A|^{2} \sin ^{2}(k x) d x \stackrel{n}{\left.\substack{k \\ \text { careful la, limits of of integration } \\=} A\right|^{2} \frac{a}{2}}=1
$$

result n

independent

$$
y=\sin ^{2}(u)
$$

The final complete solution then is:

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) \quad, \quad E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
$$

