$$
\hat{H}=\hbar \omega\left(\hat{a}_{-} \hat{a}_{+}-\frac{1}{2}\right)
$$

Or, using the other order, we get (left as exercise):

$$
\hat{H}=\hbar \omega\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right)
$$

Theorem: if $\psi$ satisfies $\hat{H} \psi=E \psi$, then $H\left(\hat{a}_{+} \psi\right)=(E+\hbar \omega)\left(\hat{a}_{+} \psi\right)$

$$
\begin{aligned}
\hat{H}\left(\hat{a}_{+} \psi\right) & =\hbar \omega\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right)\left(\hat{a}_{+} \psi\right)=\hbar \omega\left(\hat{a}_{+} \hat{a}_{-} \hat{a}_{+}+\frac{1}{2} \hat{a}_{+}\right) \psi \\
& =\hbar \omega \hat{a}_{+}\left(\hat{a}_{-} \hat{a}_{+}+\frac{1}{2}\right) \psi=\hat{a}_{+}\left[\hbar \omega\left(\hat{a}_{-} \hat{a}_{+}+1=\frac{1}{2}\right) \psi\right] \\
& =\hat{a}_{+}(\hat{H}+\hbar \omega) \psi=\hat{a}_{+}(E+\hbar \omega) \psi=(E+\hbar \omega)\left(\hat{a}_{+} \psi\right) .
\end{aligned}
$$

If I know one solution, I know another solution ...

# Another theorem: if $\psi$ satisfies $\hat{H} \psi=E \psi$, then $\hat{H}\left(\hat{a}_{-} \psi\right)=(E-\hbar \omega)\left(\hat{a}_{-} \psi\right)$ (left as exercise) 

$\hat{a}_{+}$is the raising operator

## Equally spaced

 energies! This is why it works.Not general: valid for oscillators only.


However, there is a problem: the energy cannot continue going down!


Theorem: Eless than $V(x)$ cannot happen

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi \longrightarrow \frac{d^{2} \psi}{d x^{2}}=\frac{2 m}{\hbar^{2}} \underbrace{[V(x)-E]} \psi
$$

If this is >0 for all $x$, then $\psi$ and
 $d^{2} \psi / d x^{2}$ must have same sign.

Because the energy cannot continue going down forever, the chain down must stop...

Eventually once true ground state $\psi_{0}$ is reached, then $\hat{a}_{-} \psi_{0}$ must be 0 . We can use this condition to find $\psi_{0}$.

$$
\begin{gathered}
\frac{1}{\sqrt{2 \hbar m \omega}}\left(\hbar \frac{d}{d x}+m \omega x\right) \psi_{0}=0 \rightarrow \frac{d \psi_{0}}{d x}=-\frac{m \omega}{\hbar} x \psi_{0} \\
\int \frac{d \psi_{0}}{\psi_{0}}=-\overbrace{-\frac{m \omega}{\hbar} \int x d x \Rightarrow \ln \psi_{0}=-\frac{m \omega}{2 \hbar} x^{2}+\text { constant }} \\
\psi_{0}(x)=A e^{-\frac{m \omega}{2 \hbar} x^{2}} .
\end{gathered}
$$

After normalization: (left as exercise, use Gaussian integrals in back cover of book)

What is the energy $E_{0}$ ?

$$
\begin{array}{|l|}
\hline \psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}} \\
\begin{array}{l}
\text { Gaussian } \\
\text { function } \\
\text { (even) }
\end{array} \\
\hline
\end{array}
$$

## $\hbar \omega\left(\hat{a}_{+} \hat{a}_{-}+1 / 2\right) \psi_{0}=E_{0} \psi_{0}$ <br> $\hat{H}$ (Hamiltonian)

Then:

$$
E_{0}=\frac{1}{2} \hbar \omega
$$

$>0$ as expected.
"Zero point energy".
The harmonic oscillators are never still!


Equally spaced levels

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

## Solutions are

$$
\psi_{n}(x)=A_{n}\left(\hat{a}_{+}\right)^{n} \psi_{0}(x)
$$

Example 2.4: construct state 1
Brings down an $x$

$$
\begin{aligned}
\psi_{1}(x) & =A_{1} \hat{a}_{+} \psi_{0}=\frac{A_{1}}{\sqrt{2 \hbar m \omega}}\left(-\hbar \frac{d}{d x}+m \omega x\right)\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}} \\
& =A_{1}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \sqrt{\frac{2 m \omega}{\hbar}} x e^{-\frac{m \omega \omega}{2 \hbar} x^{2}} .
\end{aligned}
$$



Note: particle can be found outside the classical region

Zero chance at the nodes.

## It can be shown, following the textbook, that:

$$
\begin{aligned}
& \hat{a}_{+} \psi_{n}= \sqrt{n+1} \psi_{n+1} \quad \psi_{n}=\frac{1}{\sqrt{n!}}\left(\hat{a}_{+}\right)^{n} \psi_{0} \\
& \hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1} \\
& \int_{-\infty}^{\infty} \psi_{m}^{*} \psi_{n} d x=\delta_{m n} \\
& \begin{array}{l}
\text { Orthonormal like we found } \\
\text { before for square well. }
\end{array}
\end{aligned}
$$

Example 2.5: find expectation value of $V$ in the $n$th state.

$$
\langle V\rangle=\left\langle\frac{1}{2} m \omega^{2} x^{2}\right\rangle=\frac{1}{2} m \omega^{2} \int_{-\infty}^{\infty} \psi_{n}^{*} x^{2} \psi_{n} d x
$$

It may be tempting to write $\psi_{n}$ as a Gaussian with some polynomial in front. However, there is a simpler way.

From $\hat{a}_{ \pm} \equiv \frac{1}{\sqrt{2 \hbar m \omega}}(\mp i \hat{p}+m \omega \hat{x})$ used before, deduce:

$$
\begin{aligned}
& \hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}_{+}+\hat{a}_{-}\right): \quad \hat{p}=i \sqrt{\frac{\hbar m \omega}{2}}\left(\hat{a}_{+}-\hat{a}_{-}\right) \\
& \hat{x}^{2}=\frac{\hbar}{2 m \omega}\left[\left(\hat{a}_{+}\right)^{2}+\left(\hat{a}_{+} \hat{a}_{-}\right)+\left(\hat{a}_{-} \hat{a}_{+}\right)+\left(\hat{a}_{-}\right)^{2}\right]
\end{aligned}
$$

Creates $\psi_{n-2}$ orthog to $\psi_{n}$

$$
\begin{gathered}
\langle V\rangle=\frac{\hbar \omega}{4} \int \psi_{n}^{*}\left[\left(\hat{a}_{+}\right)^{2}+\left(\hat{a}_{+} \hat{a}_{-}\right)+\left(\hat{a}_{-} \hat{a}_{+}\right)+\left(\hat{a}_{-}\right)^{2}\right] \psi_{n} d x \\
\text { Creates } \psi_{n+2} \text { orthog to } \psi_{n} \\
\hat{a}_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}, \quad \hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1}
\end{gathered}
$$

$$
\begin{gathered}
\hat{a}_{-} \hat{a}_{+} \psi_{n}=\hat{a}_{-} \sqrt{n+1} \psi_{n+1}=\sqrt{n+1} \underbrace{\hat{a}_{n}}_{\sqrt{\sqrt{n+1}} \psi_{n} \psi_{n+1}}=(n+1) \psi_{n} \\
\langle V\rangle=\frac{\hbar \omega}{4}(n+n+1)=\frac{1}{2} \hbar \omega\left(n+\frac{1}{2}\right)=\frac{1}{2} E_{n}
\end{gathered}
$$

