2.3 The harmonic oscillator

Any potential minimum can
 be approx. by a harmonic oscillator, if oscillations are small. Thus, this is widely used! Even E\&M is quantized this way.

We wish to study the harmonic oscillator from the QM perspective:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+\underbrace{\frac{1}{2} m \omega^{2} x^{2}}_{V(x)=\frac{1}{2} m \omega^{2} x^{2}} \psi=E \psi \\
V
\end{gathered}
$$

Two methods will be used to arrive to the same answer:

Algebraic method (uses $\hat{a}+$ and \hat{a} - operators)
Analytic method (uses polynomials)

Warning: the symbol ^ will sometimes appear, sometimes not. You have to develop the ability to judge if a quantity is an operator or not.

Preliminary exercise: commutation relations

We define the commutator between operators \hat{A} and \hat{B} as:

$$
[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A}
$$

Suppose $\hat{A}=\hat{x}$ and $\hat{B}=\hat{p}$. Thus, we want $[\hat{x}, \hat{p}]=(\hat{x} \hat{p}-\hat{p} \hat{x})$. This is NOT zero because \hat{p} is the derivative operator.

To know its value you need a general "test function" $f(x)$.

$$
\begin{gathered}
{[\hat{x}, \hat{p}] f(x)=\left[x \frac{\hbar}{i} \frac{d}{d x}(f)-\frac{\hbar}{i} \frac{d}{d x}(x f)\right]=\frac{\hbar}{i}\left(x \frac{d f}{d x}-x \frac{d f}{d x}-f\right)=i \hbar f(x)} \\
{[\hat{x}, \hat{p}]=i \hbar \quad}
\end{gathered} \begin{aligned}
& \text { In general, operators } \\
& \text { do not commute! }
\end{aligned}
$$

Finding the commutator of two given operators is a typical test problem.

$$
\begin{aligned}
& \text { 2.3.1 Algebraic method } \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi=E \psi \longrightarrow \quad \frac{1}{2 m}\left[\hat{p}^{2}+(m \omega \hat{x})^{2}\right] \psi=E \psi \\
& \hat{p} \equiv(\hbar / i) d / d x
\end{aligned}
$$

For u, v real numbers $u^{2}+v^{2}=(i u+v)(-i u+v)$ but not for operators.
This factor is merely for future convenience.
By analogy try $\hat{a}_{ \pm} \equiv \frac{1}{\sqrt{2 \hbar m \omega}}(\mp i \hat{p}+m \omega \hat{x})$ and cross fingers.

$$
\begin{gathered}
\hat{a}_{-} \hat{a}_{+}=\frac{1}{2 \hbar m \omega}(\hat{p}+m \omega \hat{x})(-i \hat{p}+m \omega \hat{x})=\frac{1}{2 \hbar m \omega}\left[\hat{p}^{2}+(m \omega \hat{x})^{2}-i m \omega(\hat{x} \hat{p}-\hat{p} \hat{x})\right] \\
\hat{a}_{-} \hat{a}_{+}=\frac{1}{2 \hbar m \omega}\left[\hat{p}^{2}+(m \omega \hat{x})^{2}\right]-\frac{i}{2 \hbar}[\hat{x}, \hat{p}]=\frac{1}{\hbar \omega} \hat{H}+\frac{1}{2} \Longrightarrow \hat{H}=\hbar \omega\left(\hat{a}_{-} \hat{a}_{+}-\frac{1}{2}\right) \\
{[\hat{x}, \hat{p}]=i \hbar}
\end{gathered}
$$

$$
\hat{H}=\hbar \omega\left(\hat{a}_{-} \hat{a}_{+}-\frac{1}{2}\right)
$$

Or, using the other order, we get (left as exercise):

$$
\hat{H}=\hbar \omega\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right)
$$

> Theorem: if ψ satisfies $\hat{H} \psi=E \psi$, then $\hat{H}\left(\hat{a_{+}} \psi\right)=(E+\hbar \omega)\left(\hat{a}_{+} \psi\right)$

$$
\begin{aligned}
\hat{H}\left(\hat{a}_{+} \psi\right) & =\hbar \omega\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right)\left(\hat{a}_{+} \psi\right)=\hbar \omega\left(\hat{a}_{+} \hat{a}_{-} \hat{a}_{+}+\frac{1}{2} \hat{a}_{+}\right) \psi \\
& =\hbar \omega \hat{a}_{+}\left(\hat{a}_{-} \hat{a}_{+}+\frac{1}{2}\right) \psi=\hat{a}_{+}\left[\hbar \omega\left(\hat{a}_{-} \hat{a}_{+}+1-\frac{1}{2}\right) \psi\right] \\
& =\hat{a}_{+}(\hat{H}+\hbar \omega) \psi=\hat{a}_{+}(E+\hbar \omega) \psi=(E+\hbar \omega)\left(\hat{a}_{+} \psi\right)
\end{aligned}
$$

If I know one solution, I know another solution, etc. ...

> Another theorem: if ψ satisfies $\hat{H}_{\psi}=E_{\psi}$ then $\hat{H}^{\prime}\left(\hat{a}_{-} \psi\right)=(E-\hbar \omega)\left(\hat{a}_{-} \psi\right)$ (left as exercise)
\hat{a}_{+}is the raising operator

Equally spaced energies! This is why it works.

Not general: valid for oscillators only.

> If I am given one solution, I get infinite more.

However, there is a problem: the energy cannot continue going down!

Theorem: Eless than $V(x)$ cannot happen

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi \longrightarrow \frac{d^{2} \psi}{d x^{2}}=\frac{2 m}{\hbar^{2}} \underbrace{}_{\text {If this is }>0 \text { for all } x \text {, as in the }}[V(x)-E] \psi
$$

 incorrect sketch above, then ψ and
$d^{2} \psi / d x^{2}$ must have same sign. Integrable functions do not satisfy this constraint.
Because the energy cannot continue going down forever, the chain down must stop...

