To prepare for Test 1 Sept 24,
drop problems 1.3, 1.7, 1.8 from HW1.



2.4 The free particle

The free particle has V(x)=0 everywhere. It is easy to
solve classically, like a ball moving straight in empty space.
However, in QM it is more subtle and complicated.
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If youtry ¥(x) = Ae'™ + Be ™** it works.
k, and thus E, are unrestricted since there is no boundary.
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Introduce v =fi k/2m as a velocity (check units!)
Then, in exponents we have (x + ut)
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Two paradoxes:

v=hk/2m = p/2m (using de Broglie formula) = % classical formula v=p/m

Solutions are not normalizable because Y*W¥=1 for all x, thus
integral over x diverges: no stationary states for free
particles. ®

Several plane waves Wave packet
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Because k is unrestricted, linear combinations are
integrals instead of sums.
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I
infinite square well as example

Like before, we are given the =0 wave function
and from there we must find ¢(k).
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We use Fourier analysis (page 56) to find #(k).
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Inverse Fourier transform  Fourier tfransform of f(x)

Applied to our pr'oblem, the formula to use is:

Analog of ¢, _\/7]. sm Ex W (x.0) dx for sq. well.




Example 2.6: evolution of a Ty

localized t=0 state X
-a a
. A, If —a<x<a, ..
Given Y(x.0) = ’ . " find X.t
(x. U) 0. otherwise, W(x, 1)
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Third, and last, use Ww(x.1) = ———-[ (k)e'* =3 D gk
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This integral must be computed numerically,
although special limits can be done analytically.

(1) If a is small, then t=0 state is localized in space
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(2) If a is large, then =0 state is spread in space
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Sharp peak as "a” grows
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