To prepare for Test 1 Sept 24, drop problems 1.3, 1.7, 1.8 from HW1.

### 2.4 The free particle

The free particle has $V(x)=0$ everywhere. It is easy to solve classically, like a ball moving straight in empty space. However, in QM it is more subtle and complicated.

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \quad \text { or } \quad \frac{d^{2} \psi}{d x^{2}}=-k^{2} \psi \text { with } k \equiv \frac{\sqrt{2 m E}}{\hbar}
$$

If you try $\psi(x)=A e^{i k x}+B e^{-i k x}$ it works.
$k$, and thus $E$, are unrestricted since there is no boundary.
Adding time dependence it becomes:

$$
\begin{gathered}
\Psi(x, t)=A e^{i k\left(x-\frac{\hbar k}{2 m} t\right)}+B e^{-i k\left(x+\frac{\hbar k}{2 m} t\right)} \\
\text { where } E=\hbar^{2} k^{2} / 2 m
\end{gathered}
$$

Introduce $v=\hbar k / 2 m$ as a velocity (check units!)
Then, in exponents we have $(x \pm v t)$
"-vt" term moves to the right


Compact form:
$\Psi_{k}(x, t)=A e^{i\left(k x-\frac{n k^{2}}{2 m} t\right)}$ with $k \equiv \pm \frac{\sqrt{2 m E}}{\hbar}$

## Two paradoxes:

$v=\hbar k / 2 m=p / 2 m$ (using de Broglie formula) $=\frac{1}{2}$ classical formula $v=p / m$
Solutions are not normalizable because $\Psi^{\star} \Psi=1$ for all $x$, thus integral over $x$ diverges: no stationary states for free particles. :

Several plane waves Wave packet

We can solve this problem via wave packets (i.e. linear combination of plane waves).


Because $k$ is unrestricted, linear combinations are integrals instead of sums.

$$
\begin{aligned}
& \Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi(k) e^{i\left(k . x-\frac{n k^{2}}{2 m} t\right)} d k \\
& \phi(k) d k \text { is like } c_{n} \text { in } \sum_{\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) e^{-i\left(n^{2} \pi^{2} n / 2 m a^{2}\right) t}}
\end{aligned}
$$

infinite square well as example
Like before, we are given the $t=0$ wave function and from there we must find $\phi(k)$.
$\underset{\text { provided }}{\Psi(x .0)}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \underset{\text { unknown }}{\phi(k)} e^{i k x} d k$

We use Fourier analysis (page 56) to find $\phi(k)$.
$f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} F(k) e^{i k x} d k \Longleftrightarrow F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) e^{-i k x} d x$

Inverse Fourier transform Fourier transform of $f(x)$

Applied to our problem, the formula to use is:


## Example 2.6: evolution of a localized $t=0$ state



Given $\Psi(x, 0)=\left\{\begin{array}{ll}A, & \text { if }-a<x<a, \\ 0, & \text { otherwise },\end{array}\right.$ find $\Psi(x, t)$
First step: normalization at $t=0$

$$
1=\int_{-\infty}^{\infty}|\Psi(x, 0)|^{2} d x=|A|^{2} \int_{-a}^{a} d x=2 a|A|^{2} \Rightarrow A=\frac{1}{\sqrt{2 a}}
$$

Second, calculate $\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \Psi(x .0) e^{-i k x} d x$

$$
\begin{array}{rll}
\phi(k) & =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 a}} \int_{-a}^{a} e^{-i k x} d x=\left.\frac{1}{2 \sqrt{\pi a}} \frac{e^{-i k . x}}{-i k}\right|_{-a} ^{a} & \text { Check } \\
& =\frac{1}{k \sqrt{\pi a}}\left(\frac{e^{i k a}-e^{-i k a}}{2 i}\right)=\frac{1}{\sqrt{\pi a}} \frac{\sin (k a)}{k}, & \begin{array}{l}
\text { every } \\
\text { step! }
\end{array}
\end{array}
$$

Third, and last, use $\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \phi(k) e^{i\left(k \cdot x-\frac{n k^{2}}{2 n \prime \prime} t\right)} d k$


This integral must be computed numerically, although special limits can be done analytically.
(1) If $a$ is small, then $t=0$ state is localized in space


(2) If $a$ is large, then $t=0$ state is spread in space


