Eventually once true ground state ψ_{0} is reached, then $\hat{a}_{-} \psi_{0}$ must be 0 . We can use this condition to find ψ_{0}.

$$
\begin{gathered}
\underbrace{\frac{1}{\sqrt{2 \hbar m \omega}}\left(\hbar \frac{d}{d x}+m \omega x\right) \psi_{0}=0 \quad \frac{d \psi_{0}}{d x}=-\frac{m \omega}{\hbar} x \psi_{0}}_{\hat{a}_{-}} \\
\int \frac{d \psi_{0}}{\psi_{0}}=-\frac{m \omega}{\hbar} \int x d x \Rightarrow \ln \psi_{0}=-\frac{m \omega}{2 \hbar} x^{2}+\text { constant } \\
\psi_{0}(x)=A e^{-\frac{m \omega x^{2}}{2 \hbar} x^{2}}
\end{gathered}
$$

After normalization: (left as exercise, use Gaussian integrals in back cover of book)

What is the energy E_{0} ?

$$
\left.\begin{array}{l}
\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}} \text { Check! } \\
=0 \\
+1 / 2) \psi_{0}=E_{0} \psi_{0} \text { (unssian } \\
\text { (even) }
\end{array}\right\}
$$

Then: $\quad E_{0}=\frac{1}{2} \hbar \omega$
>0 as expected. Deep meaning: QM has "Zero point energy". The harmonic oscillators, or any other QM problem, are never still!

Equally spaced levels

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

Solutions are

$$
\psi_{n}(x)=A_{n}\left(\hat{a}_{+}\right)^{n} \psi_{0}(x)
$$

Example 2.4: construct state 1
Brings down an x

$$
\begin{aligned}
\psi_{1}(x) & =A_{1} \hat{a}_{+} \psi_{0}=\frac{A_{1}}{\sqrt{2 \hbar m \omega}}\left(-\hbar \frac{d}{d x}+m \omega x\right)\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}} \\
& =A_{1}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \sqrt{\frac{2 m \omega}{\hbar}} x e^{-\frac{m \omega}{2 \hbar} x^{2}} .
\end{aligned}
$$

Note: particle can be found outside the classical region
~Zero chance near nodes.

It can be shown, following the textbook, that:

$$
\begin{aligned}
& \hat{a}_{+} \psi_{n}= \sqrt{n+1} \psi_{n+1} \quad \psi_{n}=\frac{1}{\sqrt{n!}}\left(\hat{a}_{+}\right)^{n} \psi_{0} \\
& \hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1} \\
& \int_{-\infty}^{\infty} \psi_{m}^{*} \psi_{n} d x=\delta_{m n} \\
& \begin{array}{l}
\text { Orthonormal, like we found } \\
\text { before for square well. }
\end{array}
\end{aligned}
$$

Example 2.5: find expectation value of V in the n-th state.

$$
\langle V\rangle=\left\langle\frac{1}{2} m \omega^{2} x^{2}\right\rangle=\frac{1}{2} m \omega^{2} \int_{-\infty}^{\infty} \psi_{n}^{*} x^{2} \psi_{n} d x
$$

It may be tempting to write ψ_{n} as a Gaussian with some polynomial in front. However, there is a simpler way.

From $\hat{a}_{ \pm} \equiv \frac{1}{\sqrt{2 \hbar m \omega}}(\mp i \hat{p}+m \omega \hat{\hat{x}})$ used before, deduce:

$$
\begin{aligned}
& \hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}_{+}+\hat{a}_{-}\right): \quad \hat{p}=i \sqrt{\frac{\hbar m \omega}{2}\left(\hat{a}_{+}-\hat{a}_{-}\right)} \\
& \hat{x}^{2}=\frac{\hbar}{2 m \omega}\left[\left(\hat{a}_{+}\right)^{2}+\left(\hat{a}_{+} \hat{a}_{-}\right)+\left(\hat{a}_{-} \hat{a}_{+}\right)+\left(\hat{a}_{-}\right)^{2}\right]
\end{aligned}
$$

Creates ψ_{n-2} orthog to ψ_{n}

$$
\begin{gathered}
\langle V\rangle=\frac{\hbar \omega}{4} \int \psi_{n}^{*}\left[\left(\hat{a}_{+}\right)^{2}+\left(\hat{a}_{+} \hat{a}_{-}\right)+\left(\hat{a}_{-} \hat{a}_{+}\right)+\left(\hat{a}_{-}\right)^{2}\right] \psi_{n} d x \\
\text { Creates } \psi_{n+2} \text { orthog to } \psi_{n} \\
\hat{a}_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}, \quad \hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1}
\end{gathered}
$$

$$
\hat{a}_{-} \hat{a}_{+} \psi_{n}=\hat{a}_{-} \sqrt{n+1} \psi_{n+1}=\sqrt{n+1} \frac{\hat{a}_{-} \psi_{n+1}}{\sqrt{n+1} \psi_{n}}=(n+1) \psi_{n}
$$

$$
\langle V\rangle=\frac{\hbar \omega}{4}(n+n+1)=\frac{1}{2} \hbar \omega\left(n+\frac{1}{2}\right)=\frac{1}{2} E_{n}
$$

About HW3
(2.10) and (2.11)

$$
\begin{aligned}
& (2.11) \\
& \operatorname{sing} \psi_{m}(x)=\frac{1}{\sqrt{n!}}\left(\hat{\left.Q_{+}\right)^{m} \psi_{0}(x) \text {, and } \hat{Q}_{+}=\frac{1}{\sqrt{2 \hbar m \omega}}(-i \hat{p}+m \omega \hat{x}) \text {, }} \begin{array}{l}
\text { and } \psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}} \text {, }
\end{array} \text { the entree problem into " } x\right. \text { space" and integrate, etc. }
\end{aligned}
$$

You move the entire problem into "x space" and integrate, etc.
(2.12) Following example 2.5 book, you keep wore functions in terms of \hat{a}_{+}operators and, instead, transform, for example, \hat{x}^{2} or \hat{p}^{2} in the language of \hat{a} and \hat{a}_{t}. Then, find Often this procedure is easier. expectation values.

