Since we had so much fun, let us redo the harmonic
oscillator! © : 2.3.2 The Analytic Method.
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Valid only at large &. Also note that the "+
exponential is not hormalizable.



same exponential

Then, propose ¥(§) = h(&')c’:‘_l‘f"/"Z " as found before
\ “milder” than exponential,
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"New" Sch. Eq.
At first sight looks
worse than before!



Try a power series or polynomial (a are coefficients;
should not be confused with previous operators a):
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djy2 = —; X aj (0,2,4,..) are separated
from odd (1,3,5,...).
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However, this series cannot go on forever.
It must terminate and become a polynomial.

Reason: at large j, a;., = 2/ a;, a;.4 = (2/j+2)(2/)) |,
At large j,a ~ 1/(~|/2)I thus
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which diverges at large &, thus it is not normalizable.




There must be an "n" beyond which q,,,=0 ...
both for the even and odd sectors.

But the "n" is not unique, can be any integer.
For each n that we choose, we will find a E,.
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(n+1)(n+2)a,., - 2na, + (K-1)a, =0

Implies -2n+(K-1)=0 or K=2n+1
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that we know is correct. Check!

Note: I am not sure what the author tries to
say with Fig. 2.6. I suggest to ignore it.




Solutions? I will have one solution with only a,,
one with only a, and a,, one with only a,, a,, and
ay, ..., only one solution with a; one with only q;

and as;, one with only a;, a;, and as, ...,
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For n=2, K=2n+1=5. Thus, a,=(1-5)/2 a,= -2 a,



These are the same solutions found before with
the raising and lowering operators! In general:
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solutions (no need to check) Jn!
Hy=1, Hermite polynomials.
H,=2¢, Hn has n nodes.They
e 4E2_ 9 are even and odd

2= ﬁz— " functions.

Hjy = 388" — 12¢, A Ermeet: french
Hy=168% - 48E% + 12, Hermite : english
Hs =328 — 16083 + 120€.
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Amazingly at large n, the results become similar to
the classical result for a harmonic oscillator (dashed)
(general result for all problems of QM)
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