Since we had so much fun, let us redo the harmonic oscillator! © : 2.3.2 The Analytic Method.

$$
\begin{array}{cc}
\begin{array}{c}
\hbar^{2} \\
2 m \\
\frac{d^{2} \psi}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi=E \psi
\end{array} & \boxed{m>\sqrt{\frac{m \omega}{\hbar}} x} \begin{array}{l}
\text { Nultiply by }-2 / \hbar \omega \\
\frac{d^{2} \psi}{\text { Now we follow }} \begin{array}{l}
\text { traditional } \\
\text { approach: } \\
\text { derivatives on }
\end{array} \\
\begin{array}{l}
\text { one side, the rest } \\
\text { on the other. }
\end{array}
\end{array}
\end{array}
$$

At large $\xi: \quad \frac{d^{2} \psi}{d \xi^{2}} \approx \xi^{2} \psi \longrightarrow \psi(\xi) \approx A e^{-\xi^{2} / 2}$
Valid only at large ξ. Also note that the " + " exponential is not normalizable.

Then, propose $\psi(\xi)=h(\xi) e^{-\xi^{2} / 2}$ as found before
"milder" than exponential, like a polynomial

$$
\begin{gathered}
\frac{d \psi}{d \xi}=\left(\frac{d h}{d \xi}-\xi h\right) e^{-\xi^{2} / 2} \\
\frac{d^{2} \psi}{d \xi^{2}}=\left(\frac{d^{2} h}{d \xi^{2}}-2 \xi \frac{d h}{d \xi}+\left(\xi^{2}-1\right) h\right) e^{-\xi^{2} / 2}=\left(\xi^{2}-K\right) \psi \\
\text { previous page }
\end{gathered} \begin{gathered}
\frac{d^{2} h}{d \xi^{2}}-2 \xi \frac{d h}{d \xi}+(K-1) h=0 \\
\begin{array}{l}
\text { "New" Sch. Eq. } \\
\text { At first sight looks } \\
\text { worse than before! }
\end{array}
\end{gathered}
$$

Try a power series or polynomial (a are coefficients: should not be confused with previous operators â):

$$
\begin{gathered}
h(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2}+\cdots=\sum_{j=0}^{\infty} a_{j} \xi^{j} \\
-2 \xi\left(\frac{d h}{d \xi}\right)=-2 \xi\left(a_{1}+2 a_{2} \xi+3 a_{3} \xi^{2}+\cdots\right)=-2 \xi\left(\sum_{j=0}^{\infty} j a_{j} \xi^{j-1}\right) \\
\frac{d^{2} h}{d \xi^{2}}=2 a_{2}+2 \cdot 3 a_{3} \xi+3 \cdot 4 a_{4} \xi^{2}+\cdots=\sum_{j=0}^{\infty}(j+1)(j+2) a_{j+2} \xi^{j} \\
\frac{d^{2} h}{d \xi^{2}}-2 \xi \frac{d h}{d \xi}+(K-1) h=0 . \\
\sum_{j=0}^{\infty}\left[(j+1)(j+2) a_{j+2}-2 j a_{j}+(K-1) a_{j}\right] \xi^{j}=0
\end{gathered}
$$

$$
(j+1)(j+2) a_{j+2}-2 j a_{j}+(K-1) a_{j}=0
$$

$$
a_{j+2}=\frac{(2 j+1-K)}{(j+1)(j+2)} a_{j} \quad \begin{aligned}
& j=0,1,2,3, \ldots \text { Even } \\
& \begin{array}{l}
(0,2,4, \ldots) \text { are separated } \\
\text { from odd }(1,3,5, \ldots)
\end{array}
\end{aligned}
$$

[However, this series cannot go on forever. It must terminate and become a polynomial.

Reason: at large $j, a_{j+2}=2 / j a_{j}, a_{j+4}=(2 / j+2)(2 / j) a_{j}, \ldots$. At large $j, a_{j} \sim 1 /(j / 2)$!, thus

$$
\sum \frac{1}{(j / 2)!} \xi^{j} \approx \sum \frac{1}{n!} \xi^{2 n} \approx e^{\xi^{2}} \quad \mathrm{e}^{\mathrm{x}}=\sum_{\mathrm{n}} \frac{1}{\mathrm{n}!} \mathrm{x}^{\mathrm{n}}
$$

which diverges at large ξ, thus it is not normalizable.

There must be an " n " beyond which $a_{n+2}=0$.. both for the even and odd sectors.

But the " n " is not unique, can be any integer. For each n that we choose, we will find a E_{n}.

$$
(n+1)(n+2) \underbrace{a_{n+2}}_{=0}-\underbrace{2 n a_{n}+(k-1) a_{n}}_{\text {Implies }-2 n+(k-1)=0}=0
$$

Recalling $K \equiv \frac{2 E}{\hbar \omega}$, we arrive to $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$
that we know is correct. Check!

Note: I am not sure what the author tries to say with Fig. 2.6. I suggest to ignore it.

Solutions? I will have one solution with only a_{0}, one with only a_{0} and a_{2}, one with only a_{0}, a_{2}, and a_{4}, \ldots, only one solution with a_{1}, one with only a_{1} and a_{3}, one with only a_{1}, a_{3}, and a_{5}, \ldots,

$$
\begin{array}{rlrl}
n=0 & \psi_{0}(\xi) & =a_{0} e^{-\xi^{2} / 2} \\
n=1 & \psi_{1}(\xi) & =a_{1} \xi e^{-\xi^{2} / 2} \\
n=2 & \psi_{2}(\xi) & =a_{0}\left(1-2 \xi^{2}\right) e^{-\xi^{2} / 2} \\
a_{x+2}=\frac{(2 \dot{x}+1-K)}{(\dot{x}+1)(\dot{\chi}+2)} a_{i_{i}} & \longrightarrow a_{2}=\frac{(1-K)}{2} a_{0}
\end{array}
$$

For $n=2, K=2 n+1=5$. Thus, $a_{2}=(1-5) / 2 a_{0}=-2 a_{0}$

These are the same solutions found before with the raising and lowering operators! In general:

$$
\psi_{n}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} H_{n}(\xi) e^{-\xi^{2} / 2}
$$

Identical to previously found solutions (no need to check) $\left.\psi_{n}=\frac{1}{\sqrt{n!}}\left(\hat{a}_{+}\right)^{n} \psi_{0}\right)$

$$
\begin{array}{ll}
H_{0}=1, & \text { Hermite polynomials. } \\
H_{1}=2 \xi . & H_{n} \text { has } n \text { nodes.They } \\
H_{2}=4 \xi^{2}-2, & \text { are even and odd } \\
H_{3}=8 \xi^{3}-12 \xi, & \text { functions. } \\
H_{4}=16 \xi^{4}-48 \xi^{2}+12, & \text { Ermeet: french } \\
H_{5}=32 \xi^{5}-160 \xi^{3}+120 \xi . & \\
\hline
\end{array}
$$

Amazingly at large n, the results become similar to the classical result for a harmonic oscillator (dashed) (general result for all problems of QM)

