There is more we can learn from this example.

For instance, $\Sigma_{n}\left|c_{n}\right|^{2}=1$. You can verify that adding, say, the first 10 terms. Reason?

$$
\left.\begin{array}{rl}
1 & =\int|\Psi(x, 0)|^{2} d x=\int\left(\sum_{n=1}^{\infty} c_{m} \psi_{m}(x)\right)^{*}\left(\sum_{n=1}^{\infty} c_{n} \psi_{n}(x)\right) d x \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m}^{*} c_{n} \int \psi_{m}(x)^{*} \psi_{n}(x) d x
\end{array} \begin{array}{ll}
\text { This happens only if the } \\
\text { given } \Psi(x, 0) \text { is already }
\end{array}\right\}
$$

Thus, $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}=1$ is equivalent to normalization 1 , which is probabibility of finding the particle somewhere in the well 100\%.

Moreover, $\left|c_{1}\right|^{2}=0.99855 \ldots$... implying other coefficients are very small. Why? Because $\Psi(x, 0)$ resembles the ground state! Develop intuition!

If you measure the energy, it will be shown that $\left|c_{n}\right|^{2}$ is the probability that you will find E_{n} as result. Here, the chance of measuring E_{1} is high.

It can also be shown (book p37) that:

$$
\langle\hat{H}\rangle=\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} E_{n}
$$

In general for 〈̂̂>, with \hat{O} any operator, this is not true.
Intuition! Read book: $\hat{\langle H\rangle}$ is only slightly above the ground state energy
E_{1} compatible with $\left|c_{1}\right|^{2} \sim 1$

Summary of infinite square well

$$
\begin{aligned}
& \psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) \\
& E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
\end{aligned}
$$

Comments about HW1 after grading:

Problem 1.5

Problem 1.16

By mere symmetry $\langle X\rangle=0$. If you found $\langle X\rangle \neq 0$ You must realize there

If you found $\sigma x=0$, there is also a math error because the wave function has an obvious size Coot a S-function).

If you found $\left\langle x^{2}\right\rangle=a^{2}+\frac{1}{3} a^{3}$ in 1.16 then you must realize there is an error. a^{2} has the correct units but a^{3} not. It is like adding $m^{2}+m^{3} \quad$ ($m=$ meters)

Problem 1.7

$$
\frac{d p}{d t}=\underset{\text { classical }}{F=-\frac{\partial V(x)}{\partial x}} \rightarrow \frac{d\langle p\rangle}{d t}=\left\langle-\frac{\partial V}{\partial x}\right\rangle
$$

Expectation values behave classically.

Problem 1.8 A shift by a onstrat $\operatorname{ofv}(x)$ does rot charge the phyies

2.3 The harmonic oscillator

Any minimum of a potential can be approximated by a harmonic oscillator as long as oscillations are small.

We wish to study the harmonic oscillator from the QM perspective:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+\underbrace{\frac{1}{2} m \omega^{2} x^{2}} \psi=E \psi \\
V(x)=\frac{1}{2} m \omega^{2} x^{2}
\end{gathered}
$$

Two methods will be used to arrive to the same answer:

Algebraic method (uses $\hat{a}+$ and $\hat{\mathrm{a}}$ - operators)
Analytic method (uses polynomials)

Warning: the symbol ^ will sometimes appear, sometimes not. You have to develop the ability to judge if a quantity is an operator or not.

Preliminary exercise: commutation relations

We define the commutator between operators \hat{A} and \hat{B} as:

$$
[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A}
$$

Suppose $\hat{A}=\hat{x}$ and $\hat{B}=\hat{p}$. Thus, we want $[\hat{x}, \hat{p}]=(\hat{x} \hat{p}-\hat{p} \hat{x})$. This is NOT zero because \hat{p} is the derivative operator.

To know its value you need a general "test function" $f(x)$.

$$
\left.[\hat{x}, \hat{p}] f(x)=\left[x \frac{\hbar}{i} \frac{d}{d x}(f)-\frac{\hbar}{i} \frac{d}{d x}(x f)\right]=\frac{\hbar}{i}\left(x \frac{d f}{d x}-x \frac{d f}{d x}-f\right)=i \hbar f(x)\right) \text { ll} \begin{array}{ll}
{[\hat{x}, \hat{p}]=i \hbar} & \begin{array}{l}
\text { In general, operators } \\
\text { do not commute! }
\end{array}
\end{array}
$$

Finding the commutator of two given operators is a typical test problem.

2.3.1 Algebraic method

$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi=E \psi \longrightarrow \frac{1}{2 m}\left[\hat{p}^{2}+(m \omega \hat{x})^{2}\right] \psi=E \psi$

$$
\hat{p} \equiv(\hbar / i) d / d x
$$

For u, v real numbers $u^{2}+v^{2}=(i u+v)(-i u+v)$ but not for operators.
This factor is merely for future convenience.
By analogy try $\hat{a}_{ \pm} \equiv \frac{1}{\sqrt{2 \hbar m \omega}}(\mp i \hat{p}+m \omega \hat{x})$ and cross fingers.

$$
\begin{aligned}
& \hat{a}_{-} \hat{a}_{+}=\frac{1}{2 \hbar m \omega}(\hat{i} \hat{p}+m \omega \hat{\hat{r}})(-i \hat{p}+m \omega \hat{x})=\frac{1}{2 \hbar m \omega}\left[\hat{p}^{2}+(m \omega \hat{x})^{2}-i m \omega(\hat{x} \hat{p}-\hat{p} \hat{x})\right] \\
& \left.\hat{a}_{-} \hat{a}_{+}=\frac{1}{2 \hbar m \omega}\left[\hat{p}^{2}+(m \omega \hat{x})^{2}\right]-\frac{i}{2 \hbar} \hat{x}, \hat{p}\right]=\frac{1}{\hbar \omega} \hat{H}+\frac{1}{2} \Longrightarrow \hat{H}=\hbar \omega\left(\hat{a}_{-} \hat{a}_{+}-\frac{1}{2}\right)
\end{aligned}
$$

$$
\hat{H}=\hbar \omega\left(\hat{a}_{-} \hat{a}_{+}-\frac{1}{2}\right)
$$

Or, using the other order, we get (left as exercise):

$$
\hat{H}=\hbar \omega\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right)
$$

Theorem: if ψ satisfies $\hat{H} \psi=E \psi$, then $H\left(\hat{a}_{+} \psi\right)=(E+\hbar \omega)\left(\hat{a}_{+} \psi\right)$

$$
\begin{aligned}
\hat{H}\left(\hat{a}_{+} \psi\right) & =\hbar \omega\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right)\left(\hat{a}_{+} \psi\right)=\hbar \omega\left(\hat{a}_{+} \hat{a}_{-} \hat{a}_{+}+\frac{1}{2} \hat{a}_{+}\right) \psi \\
& =\hbar \omega \hat{a}_{+}\left(\hat{a}_{-} \hat{a}_{+}+\frac{1}{2}\right) \psi=\hat{a}_{+}\left[\hbar \omega\left(\hat{a}_{-} \hat{a}_{+}+1-\frac{1}{2}\right) \psi\right] \\
& =\hat{a}_{+}(\hat{H}+\hbar \omega) \psi=\hat{a}_{+}(E+\hbar \omega) \psi=(E+\hbar \omega)\left(\hat{a}_{+} \psi\right) .
\end{aligned}
$$

If I know one solution, I know another solution ...

