Learn to identify "symmetries"!
This one is invariant under reflection
$\mathrm{x}=0$ at left wall of box.

Separating in even-odd is valid only for even $V(x)=V(-x)$ potentials

$2^{\text {nd }}$ excited state even 2 nodes
$1^{\text {st }}$ excited state odd 1 node
ground state
even
0 node
Remember there is a
$e^{-i E_{n} t / \hbar}$ multiplying always.
Thus, $\operatorname{Re} \Psi$ and $\operatorname{Im} \Psi$ parts are oscillating with time. But $|\Psi|^{2}$ is time independent.

Two neat properties of the solutions.

 (I) They are orthonormal.$$
\int \psi_{m}(x)^{*} \psi_{n}(x) d x=\delta_{m n}\left\{\begin{array}{l}
\text { Kronecker delta } \\
=1 \text { if } m \text { equal to } n \\
=0 \text { if } m \text { diff from } n
\end{array}\right.
$$

If $m=n$ this is obvious from normalization done.
If $m \neq n$, left as exercise (please check):

$$
\begin{aligned}
& \int \psi_{m}(x)^{*} \psi_{n}(x) d x=\frac{2}{a} \int_{0}^{a} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{a} x\right) d x \\
& =\frac{1}{a} \int_{0}^{a}\left[\cos \left(\frac{m-n}{a} \pi x\right)-\cos \left(\frac{m+n}{a} \pi x\right)\right] d x \\
& =\left.\left\{\frac{1}{(m-n) \pi} \sin \left(\frac{m-n}{a} \pi x\right)-\frac{1}{(m+n) \pi} \sin \left(\frac{m+n}{a} \pi x\right)\right\}\right|_{0} ^{a} \\
& =\frac{1}{\pi}\left\{\frac{\sin [(m-n) \pi]}{(m-n)}-\frac{\sin [(m+n) \pi]}{(m+n)}\right\}=0
\end{aligned}
$$

(II) They are complete. This means coefficients

 c_{n} can always be found such that any wave function inside the square well can be written as

How do we find the coefficients?

This page not in book, just FYI.

Cartesians axes

Unit vectors are e_{1}, e_{2}, e_{3}.
Any vector can be expanded in the orthonormal basis e_{1}, e_{2}, e_{3}. E.g. $(2,0,-3)$

Square-well solutions

"Unit vectors" are $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}, \ldots$
Any wave function can be expanded in the orthonormal basis ψ_{n}
E.g. $(1,2,0,-4,10,0.1, . .$.

All these properties are not pathological of the square well but very generic.

(3) Returning to page 28 Ch 2 book. There are several possible values of E, say $E_{1}, E_{2}, E_{3}, \ldots$, as found in square well example. For each "allowed" energy, there is a solution of time-indep. Sch. Eq. with its "phase factor"

$$
\Psi_{1}(x, t)=\psi_{1}(x) e^{-i E_{1} t / \hbar}, \quad \Psi_{2}(x, t)=\psi_{2}(x) e^{-i E_{2} t / \hbar}, \ldots
$$

Make a linear combination:

$$
\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) e^{-i E_{n} t / \hbar}
$$

Statement: any wave function $\Psi(x, t)$ can be written as above. The c_{n} 's are the same as before i.e. time INDEPENDENT. But the linear combination above is NOT a stationary state i.e. $|\Psi(x, t)|^{2}$ at fixed x, changes with \dagger.

Not in book:

Is this a solution of the time-dep. Sch. Eq. with $V(x)$?

$$
\begin{aligned}
\hat{H} \Psi(x, t) & =\sum_{n=1}^{\infty} c_{n} \underbrace{\hat{H} \psi_{n}(x)}_{E_{n} \psi_{n}(x)} e^{-i E_{n} t / \hbar} \\
i \hbar \frac{\partial}{\partial t} \Psi(x, t) & =\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) \underbrace{i \hbar \frac{\partial}{\partial t} e^{-i E_{n} t / \hbar}}_{E_{n}}
\end{aligned}
$$

Final recipe for $\Psi(x, t)$ in square well:

Given an arbitrary $\Psi(x, 0)$-- that

 satisfies the BCond -- you want $\Psi(x, t)$.(1) Find stationary states and energies.

(2) "Somehow" do the integrals for coefficients:

$$
c_{n}=\sqrt{\frac{2}{a}} \int_{0}^{a} \sin \left(\frac{n \pi}{a} x\right) \Psi(x .0) d x
$$

The procedure is general but of course $\psi_{n}(x)$ and E_{n} are diff for diff potentials. Here we use the square well.

Example 2.1, page 29 book. Assume you are given at $t=0$:

$$
\Psi(x, 0)=c_{1} \psi_{1}(x)+c_{2} \psi_{2}(x)
$$

IMPORTANT: Time dependence is now trivially obtained! Eqs 2.16-2.17 arbitrary function like, say, $e^{-|x|}$

$$
\begin{aligned}
& \Psi(x, t)=c_{1} \psi_{1}(x) e^{-i E_{1} t / \hbar}+c_{2} \psi_{2}(x) e^{-i E_{2} t / \hbar} \\
&|\Psi(x, t)|^{2}=\left(c_{1} \psi_{1} e^{i E_{1} t / \hbar}+c_{2} \psi_{2} e^{i E_{2} t / \hbar}\right)\left(c_{1} \psi_{1} e^{-i E_{1} t / \hbar}+c_{2} \psi_{2} e^{-i E_{2} t / \hbar}\right) \\
&=c_{1}^{2} \psi_{1}^{2}+c_{2}^{2} \psi_{2}^{2}+2 c_{1} c_{2} \psi_{1} \psi_{2} \cos \left[\left(E_{2}-E_{1}\right) t / \hbar\right] .
\end{aligned}
$$

The prob. density is now time dependent even if stationary states are combined ("quantum beat").

Example 2.2: how to apply the recipe (typical exam problem)

"Even" with respect to middle reflection. Resembles ground state but it's not.

Normalize first:

$$
1=\int_{0}^{a}|\Psi(x, 0)|^{2} d x=|A|^{2} \int_{0}^{a} x^{2}(a-x)^{2} d x \longrightarrow A=\sqrt{\frac{30}{a^{5}}}
$$

Find coefficients c_{n} :

n odd only nonzero

$$
c_{n}=\sqrt{\frac{2}{a}} \int_{0}^{a} \sin \left(\frac{n \pi}{a} x\right) \underbrace{\sqrt{\frac{30}{a^{5}}} x(a-x) d x=8 \sqrt{15} /(n \pi)^{3}}_{\Psi n(X)} \begin{aligned}
& \text { See integration process in } \\
& \text { book. Even } n \text { (i.e. odd } \\
& \text { functions) gives } 0 \text { by } \\
& \text { symmetry. }
\end{aligned}
$$

Then, you can write the final answer:

$$
\Psi(x . t)=\sqrt{\frac{30}{a}}\left(\frac{2}{\pi}\right)^{3} \sum_{n=1.3 .5 \ldots . .} \frac{1}{n^{3}} \sin \left(\frac{n \pi}{a} x\right) e^{-i n^{2} \pi^{2} n t / 2 m a^{2}}
$$

Often forgotten by

