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Chapter 11: Quantum Dynamics

Thus far, our potentials V(r) have been time independent. 
Now we will use V(r,t). 

These type of problems are very difficult so we will 
work in the context of perturbation theory. The most 
dominant portion of H will be time independent, while 
only the perturbation will be time dependent. 

By this procedure we will study the emission and 
absorption of radiation (photons) by an atom. 

Thus far, we have casually spoken about transitions from 
high energy states to low. And you have learned about this 
since probably High School. But mathematically, if we are in 
an excited state, THUS FAR we stay there forever. 
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To study emission and absorption we need at least two 
states. Consider two eigenstates of H0: 

Then, how do we describe the transitions between levels, 
such as when an electron decays from a state, say, n=3 l=1 
to the ground state n=1 l=0, by emitting a photon?

At the minimum, we have to “shake” a little bit the 
electron at n=3 l=1 to allow for the transition to occur. 
How do we shake the electron? By placing the electron in 
an external electromagnetic field, which often is time 
dependent.  Then, “quantum jumps” – that are almost 
instantaneous – can occur. 

11.1: Two-level systems
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We will assume these two states are the only ones that 
really matter. Thus, any arbitrary state can be a linear 
combination of “a” and “b” at time t=0: 

Again, you can imagine these two states as for example 
the 1s and 2p states of the hydrogen atom. Or they can be 
spinors up and down, describing a spin in a magnetic field.  

If there is NO perturbation, you learned in the fall P411 that 
the time dependence is easy:

So far nothing new …
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Now we will introduce a perturbation H’(t) that 
depends on time, such as an small external field.

The two original states are still a complete basis. But the 
time dependence is not so easy. We will consider the new 
time dependence by making the coefficients, that before 
were fixed numbers, time dependent...

We know ψa, ψb, Ea, and Eb. Thus, the challenge is 
to find the coefficients as a function of time.

For example if at time t=0, ca(0)=1 and cb(0)=0, then the electron is 
at “a” initially. If at a later time T the coefficients are ca(T)=0 and 
cb(T)=1  a transition occurred from ψa to ψb.
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How do we find ca(t) and cb(t)? Requiring that the time 
DEPENDENT Sch Eq be satisfied.

Recalling
we simply plug this state into the Sch. Eq. above:

Time dependent 
coefficients.

Perturbation is time dependent. 
It may be ~ sin(ωt) for example.

Time independent Hamiltonian 
like hydrogen atom.

The dot means 
dca(t)/dt or 
dcb(t)/dt .
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Rewriting the formula we can notice some cancellations.

Then, the long original equation simplifies to:

As often done, we will now 
exploit the orthogonality
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Consider the inner product with <ψa|  
and then the inner product with <ψb| :  

Then we obtain two equations:

Reorder and use the following 
compact notation:

Note sign 
difference.
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This system of two coupled equations for the coefficients ca(t) 
and cb(t) is totally equivalent to solving the time dependent 
Sch Eq for a two states system, even if H’ is not small. If you 
wish to include more states, then more equations are 
generated, as many as coefficients i.e. as many as states.

Then, often in practice the system of 
equations simplifies further to:

where                           with 

b 

a 

Moreover, as you will see, often the diagonal matrix elements 
H’aa and H’bb are 0. E.g. an electric field arises from a potential 
that is “odd”:                          .Then a “diagonal” matrix element 
involving odd or even functions will cancel.
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It is only now that we will assume H’ is “small”. We 
will use an iterative process …

11.1.2: Time Dependent Perturbation Theory

Start with:

b 

a 
.

If H’ is zero, then all the matrix elements 
are zero, and this is the solution forever. 
The particle remains at state “a”. 

Now insert the 0th-order values 
for the coefficients into the 
right of the pair of differential 
Eqs. of previous page: 

For “a” nothing changes: 
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For “b”, we find a nontrivial result: 

To obtain something nontrivial for the “a” 
state, we need another iteration in H’:

We could continue the process, but this is sufficient. Please 
read in book page 406-407 the discussion about the 
normalization and the apparent problem that the normalization 
to 1 is not respected. But it is respected at the order of H’ you 
are keeping. 
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11.1.3: Sinusoidal Perturbation

Consider, very common, perturbations 
where the space and time component 
are separated in factors:

Then in this case, we find exactly at order 1 for the b coefficient:

Another simplification. Work near resonance and drop the first term.
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The transition probability for the transition from “a” to “b” is a 
sinusoidal function of time that can be large near resonance, even 
with a small perturbation Vba.
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The amplitude, meaning how likely is the transition from “a” to “b”, 
is regulated by both the perturbation strength hidden in Vba and 
also by how close to resonance we are. If the amplitude exceeds 1, 
then the formula is too crude and needs to be improved …

Moreover, the probability is sinusoidal. The particle can absorb 
energy and go up, or release energy and come down. 

At times                                     where n=1,2,3, … the electron is back 
in the lower state “a” with 100% chance.  Thus, often it is better to 
turn off the external field, after a time sufficient to excite the 
electron, if you wish to keep the electron in the upper state. 
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