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Section 11.5: The Adiabatic Approximation

Classical analog: a pendulum with zero 
friction oscillating in a plane. If abruptly 
you shake the box, the pendulum will have a 
complicated motion. 

But if you “very slowly” rotate the 
box, the plane of oscillation will 
slowly rotate as well. 

A very slow change in the boundary conditions of a problem 
defines an “adiabatic” process.

Often there are two characteristic times competing. One is 
internal,Ti, like the period of the pendulum that depends on 
gravity “g” and length of string “L”. The other one is external, 
Te, related in this example to the speed of rotation of the box. 
Adiabatic means Te >> Ti .  
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In QM this is often used in describing oscillations of molecules. Like we 
did for the H2

+ ion: we fixed R the distance between hydrogens and 
solved the electron problem. The results depend on R of course. Then, 
by making R=R(t) we could have found the frequencies of oscillations of 
the atoms, precursor of finding “phonons” in crystals. 

Solving the electronic problem 
first, and then addressing the 
oscillations in a fixed electronic 
cloud is called the Born-
Oppenheimer approximation.

R

R(t)

More specifically, if the electron was 
initially in the ground state, it remains in 
the ground state that smoothly changes 
its shape as R changes slowly.  This uses
the Adiabatic Approximation !

at R fixed

Same type of wave function 

simply at new R (t)
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In general: if the particle is initially at eigenstate 
nth of initial H, then in an adiabatic problem it 
remains in the eigenstate nth of the final H.

Slow 

Now consider an 
abrupt switch 
from a to 2a. 

The initial wave 
function is neither 
even nor odd, thus it 
will have a nonzero 
overlap with all the 
eigenstates!

Moreover, after the wall 
abruptly is moved to 2a, the 
energy is conserved in the 
new problem. The electron 
will never be 100% in the 
ground state. 

Definitely the wave function ψ(t) will 
NOT be 

Energy not 
conserved 
during 
evolution 
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The adiabatic theorem is complicated to prove. 
Specifically it says that in an adiabatic process the 
eigenstates -- assumed discrete energy spectrum so that 
you can follow each one -- evolve as:

For example, consider the 
square well again, with a wall 
moving with constant velocity v.

In addition, there are two phase factors, according to the theorem: 
the dynamical and the geometrical (related to the Berry phase).
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Even with a time independent 
Hamiltonian, for example a well 
with fixed “a”, the wave functions 
pick up a phase as time t grows

11.5.2: Start of proof of Adiabatic Theorem
First a reminder about the case H time independent.

A “unnecessarily complicated” 
way to write this phase is:

Consider now a time dependent Hamiltonian. At each instant 
of time “t” we can in principle solve the problem, but the 
eigenfunctions are different for each time “t”.
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As explained in QM 411, at each instant of time “t” the time 
dependent Sch Eq is satisfied using a linear combination with 
properly chosen coefficients that now depend on time:

where the standard “dynamic phase” simply 
“accumulates” between different times:

But there is a second phase (explained in Griffiths second 
edition but not in third): the “geometric phase” already 
mentioned. Differences of this geometrical phase are the Berry 
phase much discussed in condensed matter physics at present. 
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Example 11.4. Consider an electron static 
at origin of coordinates in a magnetic field 
with constant magnitude B0 but with 
direction rotating forming a cone, at 
angular velocity ω and angle α : 

The Hamiltonian is a 2x2 matrix involving the Pauli matrices:  

with 
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This problem can be solved exactly, being just a 2x2 
matrix. The eigenspinors and energies are: 

IMPORTANT: these are solutions at a fixed time t, and they 
represent spin up and down along the instantaneous direction 
of B which is changing orientation with time.

Suppose the electron starts “up” along the direction 
of the field B at time t=0

The question is: can the electron follow the magnetic field 
as it rotates in the cone, keeping the “up” orientation?
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This problem can be solved exactly at any arbitrary time “t”. 
It can be shown that the following spinor is the solution:

Expressed in terms of 
the up and down basis 
(you will do it in HW10) 
along the B direction:

Then the projection of the exact result along the “up” and “down” 
instantaneous directions can be obtained (HW10). For “down” is:

This result is EXACT at 
any time and any rotation 
angular velocity.
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Having an exact solution is ideal to study the adiabatic approximation!

It is important to identify the external and internal characteristic times:

The adiabatic approximation is when Te >> Ti , namely ω << ω1.

In the adiabatic limit the magnetic field 
leads the electron “by its nose” to rotate its 
orientation all the time pointing along B(t).

If                  then
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In exact solution, the probability of “down spin” will not 
be zero. It will oscillate. But weight is regulated by ω/λ. 
Thus, in adiabatic limit the amplitude will be minuscule.
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The new edition of Griffiths does NOT explain the origin 
of the geometrical phase. Below, for those interested, is 
the proof from the second edition. From here down, this 
portion is NOT part of the TEST 3.
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As explained in QM 411, at each instant of time “t” the time 
dependent Sch Eq is satisfied using a linear combination with 
properly chosen coefficients that now depend on time:

where the standard “dynamic phase” simply 
“accumulates” between different times:

Placing                               into                          we obtain a diff eq
for cn(t) like we did before for ca(t) and cb(t) studying emission: 

because

But there is a second phase (explained in Griffiths second 
edition but not in third): the “geometric phase”.
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Consider the inner product with <ψm| and use orthonormality at time t:  

Then we simplified from four terms to just two:

Note time 
derivative

The sum over n contains both n=m and n≠m.
n≠m can be neglected under the adiabatic condition 
as shown in next page (optional, read if interested, 
otherwise move to the following page).
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Again consider the inner product with <ψm|:  

Only now we use the adiabatic condition and declare that this term 
has to be very small because it involves a time derivative of H. 

Since n≠m then               has to be ~zero for n≠m.  

Use Hermiticity of H (that we learn in Ch 3) and assume n≠m. 

OPTIONAL 
PAGE
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Then, using the proof in the previous page, in the equation two pages 
back we can drop all terms with n≠m. 

solve

this phase factor is called the “geometric phase”

Assume electron is in state “n” at time t=0:  

The solution tells us that all coefficients with n≠m remain 0 while the 
coefficient “n” acquires a phase factor. Thus, overall the full wave 
function picks up a “dynamical phase” and a “geometrical phase”:  
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