dy/dx &

if0<x<a/2 A
dx

0, otherwise, 2 s

A ;
d ‘ ’
-—W=I—A. ifa/2 <x <a,

The derivative of a step function
is a Dirac delta. Number in front

is the jump:
d>y
o2 = Ad(x) — 2Aé(x —a/2) + Ad(x —a)
KA
(H) = ™ [6(x) —26(x —a/2) +6§(x —a)]¥(x)dx
_ h?A h*A%a | 12h°

n [V (0) — 2¢(a/2) + ¥ (a)] =

2m 2ma?

The exact result is:
Variational theorem

12
Egs = - /2"“72 holds because 12 > m?



8.2 The Ground State of Helium

5 ez (2 2 ]
H=—_(V%+Vj’2)— ('j"-i"j“— — )
2m dreg \r1 ra |r; —r;|

This problem cannot be solved exactly because
of the e-e repulsion. However, we know the
ground state energy experimentally:

E,c = —78.975 eV (experimental)

+2¢¥ Nucleus

If we neglect the e-e repulsion, the problem can be solved but
energy is 8x(-13.6 eV) = -109 eV (as shown in a lecture in Ch 5), a
bit far from the exact result: Qualitatively ok, quantitatively not
enough. NOTE: dropping a term in the Hamiltonian is not
variational, this is why -109 < -78.975

8 o4
Yo(ry. r2) = Yrieo(r)¥rioo(r2) = — 3¢ 2ry+r2)/d



To improve on the discrepancy between -109 eV and -78.975 eV, we will
use a variational method, employing the same wave function yy(r,,r,)
that solves the problem exactly when e-e neglected (Ch. 5).

8 . Note we have NO variational
Yo(ry. r2) = Yioo(r)¥ige(ra) = — e 2124 bopameter here, yet it is still a
d variational problem. We will still

& get an upper bound on the energy.

2

Hyo= BE| + Vee)bo  with v, = & !
l 4mep |r] — ra|

H) = 8L + (Vee)

(
E,=-13.6 eV 2N 2 \~ s—Hr+ra)/a
' where (Voo) = ( ¢ ) (-——) f ‘ (131‘] d3r1

dreg ) \ma? Ir; — 12|

The double integral
can be done, see 5 ( 82 ) 5

book. The result is: (Vee) = — =——FE| =34¢eV

da \ dmeg 2



(H) =—109eV +34eV=-75¢eV

Considerable quantitative improvement!

Note that -109 eV was the result of neglecting e-e, i.e. a different
Hamiltonian. Not surprising -109 eV is below -79 eV. Note also that
when the complete problem -- with e-e repulsion included -- is treated
variationally, then the result, -75 eV, is ABOVE -79 eV as it must.

We can do even better, by introducing a variational parameter Z
that mimics "screening” effects: each electron should see a
reduced nuclear charge because the core electrons are in
between. Then, let us now try:
3
Z e—Z(h +rmd/a

Yi(ry.r2) = —
td

and optimize Z after calculating <H>. Note we never "play” with
H, that is fixed. We "play” with the trial wavefunction.



How do we do the calculation of <H>? First rewrite exactly the
Hamiltonian, without modifying it:

h? et (Z Z
H=- Vigvh—— [Z4+ 2
Zm( Il 2) 4reg (rl T 1‘2)
)
e Z -2 Z -2 1
(( )+( )+ )

4mep r > Ir; — rp| l /

The unperturbed wave functions 2014/
are those of the hydrogen atom: 072 = ViooEnviolrs) =275

(l>_§
5 &~ \r| a
Then: (H)=222E1+2(Z—2)( ¢ )<1>+(Vee) \

4 €0
No Z dependence in Vee,

: . but wave function has Z.
We finally find: Repeat calculation and

(H) = [222 —42(Z-2) - (5/4)2] E| = [—222 + Q74 Z]E,| YU 9 FEEVA




Now we must optimize with respect to Z:

d
—(H)=[-4Z + (27/4)]E; =0
dZ
The optimal Z being less than 2
27 makes sense. It is like an effective
Z=167 1.69 “screened” charge: one electron
often sees the nucleus plus the

other electron in between.

1 /3\®
The final answer is then: (H) = 5 (:2—) E|=-77.5¢eV

. , 5) — 8 =20ry+m)/a
In summary, once the full H is —75 eV bolrioT) = — e
considered then our approx. B
PP —77.5 eV Yi(ry,.r) = ;;ge_z“‘”l’/“

must be an upper bound:
—78.975 eV Experimental
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