## 8.3: The Hydrogen Molecule Ion H<sub>2</sub><sup>+</sup>



We wish to find the best variational energy, and investigate in energetically the system may prefer to decompose into one neutral hydrogen and one free proton far away, or remain bounded.

We will try:

$$\psi = A \left[ \psi_0(r_1) + \psi_0(r_2) \right]$$

Note it is 1e. Thus, a sum must be used, **not a product** as in He with 2e.

where each wave function is the normalized-to-one exact ground state of hydrogen is:

$$\psi_0(\mathbf{r}) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$$

$$1 = \int |\psi|^2 d^3 \mathbf{r} = |A|^2 \left[ \int |\psi_0(r_1)|^2 d^3 \mathbf{r} \right]$$
  
+ 
$$\int |\psi_0(r_2)|^2 d^3 \mathbf{r} + 2 \int \psi_0(r_1) \psi_0(r_2) d^3 \mathbf{r} \right]$$
  
Not easy, see book. I

$$I \equiv \langle \psi_0(r_1) | \psi_0(r_2) \rangle = \frac{1}{\pi a^3} \int e^{-(r_1 + r_2)/a} d^3 \mathbf{r}$$

Not easy, see book. It is called **overlap integral**. If *R* is huge, then integral is ~0.

Final result:

$$|A|^2 = \frac{1}{2(1+I)}$$

where the integral is  $I = e^{-R/a} \left[ 1 + \left(\frac{R}{a}\right) + \frac{1}{3} \left(\frac{R}{a}\right)^2 \right]$  given to you:

After normalization, then we need to calculate <H>:

$$H\psi = A \left[ -\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{4\pi\epsilon_0} \left( \frac{1}{r_1} + \frac{1}{r_2} \right) \right] \left[ \psi_0(r_1) + \psi_0(r_2) \right]$$
$$= E_1 \psi - A \left( \frac{e^2}{4\pi\epsilon_0} \right) \left[ \frac{1}{r_2} \psi_0(r_1) + \frac{1}{r_1} \psi_0(r_2) \right].$$

where we used 
$$\left(-\frac{\hbar^2}{2m}\nabla^2 - \frac{e^2}{4\pi\epsilon_0}\frac{1}{r_1}\right)\psi_0(r_1) = E_1\psi_0(r_1)$$

(and same for proton 2 i.e. for  $r_2$ ):

$$\langle H \rangle = E_1 - 2|A|^2 \left(\frac{e^2}{4\pi\epsilon_0}\right) \left[ \langle \psi_0(r_1) \left| \frac{1}{r_2} \right| \psi_0(r_1) \rangle + \langle \psi_0(r_1) \left| \frac{1}{r_1} \right| \psi_0(r_2) \rangle \right]$$

**NOTE:** the first sandwich arises as written, plus also with  $r_2$  and  $r_1$  exchanged, thus the appearance of the factor 2 in front because integrals must be the same. Same with the other integral.

Direct integral:
$$D \equiv a \langle \psi_0(r_1) \left| \frac{1}{r_2} \right| \psi_0(r_1) \rangle$$
Exchange integral: $X \equiv a \langle \psi_0(r_1) \left| \frac{1}{r_1} \right| \psi_0(r_2) \rangle$ D =  $\frac{a}{R} - \left(1 + \frac{a}{R}\right) e^{-2R/a}$ The results given  
to you are: $X = \left(1 + \frac{R}{a}\right) e^{-R/a}$ Final result is: $\langle H \rangle = \left[1 + 2\frac{(D+X)}{(1+I)}\right] E_1$ 

But this is not the total energy ...

Proton-proton repulsion missing (no integrals needed):

$$V_{pp} = \frac{e^2}{4\pi\epsilon_0} \frac{1}{R} = -\frac{2a}{R} E_1$$
  

$$\langle H + V_{pp} \rangle / (-E_1) = F(x) = -1 + \frac{2}{x} \left\{ \frac{(1 - (2/3)x^2)e^{-x} + (1 + x)e^{-2x}}{1 + (1 + x + (1/3)x^2)e^{-x}} \right\}$$
  
Dividing by  $-E_1$   
and using the  
dimensionless  
variable  $x \equiv R/a$   
(a is ~ 0.5Å) then  
the function that  
matters is F(x):  
 $x=R/a \rightarrow \infty$ , i.e.  $F(x)=-1$ , is  
the decoupled H atom  
plus one free proton.  
 $F(x) = -1 + \frac{2}{x} \left\{ \frac{(1 - (2/3)x^2)e^{-x} + (1 + x)e^{-2x}}{1 + (1 + x + (1/3)x^2)e^{-x}} \right\}$   
Theory:  $R=1.3$  Å  
Experiment:  $R=1.06$ Å  
Binding indeed occurs, as  
shown in experiments!  
 $Equilibrium$   
 $Equilibrium$   
 $Equilibrium$   
 $F(x) = -1.2$   
Binding energy ~ 0.13x13.6eV~1.8 eV (exp. is 2.8 eV)

and

the

5

